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Perturbation expansion in phase-ordering kinetics. II.n-vector model
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The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637

~Received 29 June 1999!

The perturbation theory expansion presented earlier to describe the phase-ordering kinetics in the case of a
nonconserved scalar order parameter is generalized to the case of then-vector model. At lowest order in this
expansion, as in the scalar case, one obtains the theory due to Ohta, Jasnow, and Kawasaki~OJK!. The
second-order corrections for the nonequilibrium exponents are worked out explicitly ind dimensions and as a
function of the number of componentsn of the order parameter. In the formulation developed here the
corrections to the OJK results are found to go to zero in the largen and d limits. Indeed, the large-d
convergence is exponential.

PACS number~s!: 05.70.Ln, 64.60.Cn, 64.60.My, 64.75.1g
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I. INTRODUCTION

A perturbation theory expansion for treating the scal
features of phase-ordering kinetics in unstable systems@1#
was presented earlier@2# for the case of a nonconserved sc
lar order parameter. In this paper this method is extende
the case of a vector order parameter withn components. It is
found that spin-wave degrees of freedom introduce so
new elements into the theory. However, as in the scalar c
the Ohta, Jasnow, and Kawasaki~OJK! theory@3,1# emerges
as the zeroth-order approximation and at this order the n
equilibrium indicesl andn do not depend on the number o
componentsn of the order parameter. The second-order c
rections to these exponents are determined as functionsd
andn, and these corrections vanish for both larged andn.

The theory developed in paper I and here is a two-s
process which builds on earlier work@4#. First one maps the
original problem for the order parametercW onto one for an
auxiliary field mW . The field configurations associated wi
the properly chosen auxiliary field are smoother and the
fore easier to treat than for the order parameter. The sec
step is to treat the nonlinear field theory satisfied bymW . It is
found in both scalar and continuous (n.1) cases that one
must construct, as one constructs a fixed-point Hamilton
in critical phenomena, the equation of motion satisfied by
auxiliary field in the scaling regime. A unique aspect in t
development is the conjecture that there is a general rela
n52l2d connecting the nonequilibrium indices. This rel
tion, and the self-consistent maintenance of thet1/2 growth
law for this problem, fixes the form of the auxiliary fiel
equation of motion at second order in the perturbat
theory. An important consequence of this procedure is
the second-order contributions to the indices are expon
tially small in the large-d limit. In the continuous case it is
only the longitudinal part of the auxiliary field equation
motion which must be determined self-consistently. T
transverse part is unambiguously determined by consi
ation of the spin-wave degrees of freedom.

The nature of the perturbation expansion introduced
paper I is elucidated further here. For generaln it can be seen
that one can develop an expansion of the nonlinear term
the auxiliary field equations of motion in terms of a set
vertices labeled by its number of spin labels@5#. A vertex
PRE 611063-651X/2000/61~2!/1088~14!/$15.00
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with l labels can be self-consistently taken to be ofO(l /2
21). This, in turn, leads to the result that thel th-order
cumulant is also of orderOc(l /221). We will refer to this
expansion as thevertex expansion. As in the scalar case, thi
expansion is well behaved in the lowest orders of pertur
tion theory. We obtain nontrivial values for the nonequili
rium exponents at second order in perturbation theory
exponentiating diverging logarithms that are driven, for ge
eral dimensionalityd, by internal time integrations.

II. OVERVIEW

We study here the phase-ordering kinetics generated
the time-dependent Ginzburg-Landau~TDGL! model satis-
fied by a nonconserved vector order parameterc i(rW,t) ( i
51,2, . . . ,n),

]c i

]t
52G

dF

dc i
1h i , ~1!

where G is a kinetic coefficient,F is a Ginzburg-Landau
effective free energy assumed to be of the form

F5E ddr S c

2 (
i 51

n

(
a51

d

~¹ac i !
21V~cW !D , ~2!

where c.0 and the potentialV is assumed to be of the
symmetric degenerate wine-bottle form,V5V(cW 2). We ex-
pect only these general properties ofV will be important in
our analysis.hW is a thermal noise that is related toG by a
fluctuation-dissipation theorem. We assume that the que
is from a high temperature (TI.Tc), where the system is
disordered, to zero temperature, where the noise can be s
zero (hW 50W ). It is believed@1# that our final results are inde
pendent of the exact nature of the initial state, provided i
a disordered state with short-ranged correlations.

If we rescale length and times we can put our equation
motion in the dimensionless form

L~1!c i~1!52Vi„cW ~1!…[2
]V„cW ~1!…

]c i~1!
, ~3!

where the diffusion operator
1088 ©2000 The American Physical Society
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L~1!5
]

]t1
2¹1

2 ~4!

is introduced along with the short-hand notation that 1
notes (r1 ,t1). The standardc4 form for the potential is given
by V52 1

2 cW 21 1
4 (cW 2)2.

For late times, following a quench from the disordered
the ordered phase, the order-parameter dynamics obey
ing @1# governed by a single growing length,L(t), which is
characteristic of the spacing between defects. In this sca
regime the order-parameter correlation function has a uni
sal scaling form

C~12![^cW ~1!•cW ~2!&5c0
2F~x,t1 /t2!,

where c0 is the magnitude of the order parameter in t
ordered phase. The scaled lengthx is defined asxW5(rW1

2rW2)/L(T) where, for the nonconserved order-parame
case considered here, the growth law@6# goes asL(T)
;T1/2 whereT5 1

2 (t11t2). In the case of the autocorrelatio
function rW15rW25rW we have@7#

^cW ~rW,t1!•cW ~rW,t2!&'SAt1t2

T D l

, ~5!

wherel is a nontrivial nonequilibrium exponent that ente
when eithert1 or t2 is much larger than the other. At equ
times the scaling functionF(x)[F(x,1) is a nonanalytic
function of x for small uxu. This is best reflected in the gen
eralized form of Porod’s law@8,9# as expressed in terms o
the Fourier transformF(Q)'Q2(n1d) for large scaled wave
numberQ. The large-x behavior of the scaling function can
with proper definition of x, be put in the formF(x)
'(1/xn)e2(1/2)x2

wheren is a nontrivial subdominant expo
nent introduced in Ref.@4#.

Values forl andn were found in paper I which suggeste
that they are independent. In earlier work in Refs.@10,11#,
within the approximation developed in Ref.@4#, the two ex-
ponents were related by

n52l2d. ~6!

We conjecture here that the relation given by Eq.~6! holds
more generally and the perturbation theory must be c
structed to respect this result. The argument leading to
conjecture follows from the assumption that in the bulk sc
ing regime and away from defects the only available vec
is cW (1) and the potential contribution to the order-parame
equation of motion must be of the form

Vi„cW ~1!…52
a

L2~1!
c i~1!, ~7!

wherea is an unknown constant and, if we are to have sc
ing, the coefficient in Eq.~7! must be proportional toL22. In
Refs. @4# and @10# it was found thata5p/2. With these
assumptions one can follow the development in Ref.@4# to
show that the exponentn can be written in the form
-

al-

g
r-

r

-
is
l-
r
r

l-

n5d2
a

m
, ~8!

wherem is the eigenvalue that plays a prominent part in t
theory developed in Ref.@4#. Similarly, generalizing the
analysis in Ref.@10# for two-time correlation functions in the
limit of large time separations, one can show that the n
equilibrium exponentl is given by

l5d2
a

2m
. ~9!

By eliminatinga/2m between Eqs.~8! and~9! we obtain the
scaling relation given by Eq.~6!.

III. AUXILIARY FIELD METHOD
FOR THE n-VECTOR MODEL

Our goal here is to generalize the perturbation theory
pansion approach developed in paper I for a scalar o
parameter to the case of generaln. We will again express the
order parameter as a sum of two pieces

cW 5sW 1uW , ~10!

where, as in Ref.@12#, sW is the ordering component of th
order parameter that depends locally on ann-component
field mW : sW 5sW (mW ). The field uW represents the fluctuation
about the ordered configuration. The functional depende
of sW on mW is determined as a solution of the Euler-Lagran
equation for the associated stationary defect problem

(
l

]2s i

]ml
2

5Vi„s~m!…, ~11!

wheremW is taken to be the coordinate and the solution m
satisfy the boundary condition limumu→` s25c0

2. If we intro-
duce the notation

s i ; j 1 j 2 . . . j l
[

] l s i

]mj 1
]mj 2

•••]mj l

then Eq.~11! reads

(
l

s i ;l l 5Vi„s~m!…. ~12!

One can obtain the defect profile analytically for the ca
of a general degenerate potential for the scalar ord
parameter case. In the particular case of ac4 potential, one
obtains the usual interfacial kink solutions@m#
5tanh(m/A2). For systems with continuous symmetry,n
.1, one does not have a closed form solution for the de
profile even for thec4 potential. However, one can mak
some general statements about the form of the profile in
ordered bulk regime. For the lowestchargedefects we can
write the order-parameter profile in the formsW @mW #

5A(m)m̂, then the Euler-Lagrange equation reduces to
equation for the amplitudeA(m) given by
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A91
~n21!

m S A82
A

mD5
]V~A!

]A
. ~13!

Solutions of Eq.~13! for large m, in the bulk away from
defect cores, in contrast to the scalar case which has an
ponential approach to the ordered value, show an algeb
approach to the ordered value

A5c0S 12
j2

m2
1••• D , ~14!

where j2[(n21)/V9(c0). This solution requires that th
ordered value of the magnitude of the order parameter
given by the solution toV8(c0)50, and, for the solution to
be stable, we requireV9(c0)5q0

2.0. There are some add
tional general properties we need in the largem regime. If we
write

Vi~sW !5
]V~A!

]A

]A

]s i
5V8~A!m̂i , ~15!

and use the expansion

V8~A!5V8~c0!2c0

j2

m2
V9~c0!1•••52c0

~n21!

m2
1•••,

then we have

Vi~sW !52m̂ic0

~n21!

m2
1•••. ~16!

We also need the second derivative of the potential w
respect to the order parameter. Taking the derivative of
~15! with respect tos j , we obtain

Vi j „mW …5d i j

V8~A!

A
1s is j

1

A S V8~A!

A D 8

5Pi j „mW …
V8~A!

A
1m̂im̂jV9~A!,

where the transverse projection operator is defined by

Pi j „mW …5d i j 2m̂im̂j .

EvaluatingVi j „mW … in the bulk, where we can use Eq.~14!,
we obtain

Vi j ~mW !5q0
2m̂im̂j2Pi j

~n21!

m2
, ~17!

whereq0
25(n21)/j2.

Armed with these results, we next discuss the equation
motion governing the fieldsmW anduW . The idea is to separat
the original order-parameter equation of motion into eq
tions for mW anduW which ensure that we do obtain orderin
fluctuations are small, and the zeros ofmW reflect the zeros of
the order parametercW . The condition thatsW govern the or-
dering requires that in the bulk, away from any defect cor
sW 2→c0

2 anduW 2→0. We expect, for both the scalar and co
x-
ic

e

h
q.

of

-

s,

tinuous cases, thatuW controls the transition region betwee
the defect core and the ordered bulk.

Let us look first at the simpler scaler order-parame
case. If the form given by Eq.~10! is inserted into the equa
tion of motion given by Eq.~4!, we obtain, without approxi-
mation, the equation of motion foru,

L~1!u~1!1s1~1!L~1!m~1!52V8@s~1!1u~1!#

1s2~1!@¹m~1!#2.

~18!

We assume that the equation of motion satisfied bym is of
the form,

L~1!m~1!5J~1!, ~19!

whereJ(1) is a functional ofm(1) and, if naive scaling is
to hold, we requireJ'O(L21). How one proceeds when
one does not have naive scaling will be discussed elsewh
Using Eq. ~19! in Eq. ~18! for u leads to an equation o
motion for the fieldu(1),

L~1!u~1!52V8@s~1!1u~1!#1s2~1!@¹m~1!#2

2s1~1!J~1!. ~20!

Our goal then is to show that we can chooseJ(1) such
that u is small in the bulk and near a defect. More quanti
tively, in the bulk, we haves@m#→c0 sgn@m#, while
limumu→` u@m#50. To see how this works and to put som
constraints onJ(1), wenote, if u is small in the bulk, then
we can self-consistently expand

V8@s~1!1u~1!#5V8@s~1!#1V9@s~1!#u~1!1•••

5s2~1!1q0
2u~1!1•••.

The equation of motion foru then takes the form in the bulk

@L~1!1q0
2#u~1!52s2~1!$12@¹m~1!#2%2s1~1!J~1!.

~21!

In working in the bulk ordered regime, which makes t
dominate contribution to the scaling properties, we can e
mate m'L, ¹'L21, and ]/]t'L22. Notice on the left-
hand side of Eq.~21! that u has acquired amassand, in the
long-time long-distance limit, the term whereu is multiplied
by a constant dominates the derivative terms andu is given
by

q0
2u~1!52s2~1!$12@¹m~1!#2%2s1~1!J~1!.

In the limit of largeumu the derivatives ofs go exponentially
to zero and the right-hand side of Eq.~21! is exponentially
small. Clearly we can construct a solution for u which is a
exponentially small in the bulk. We have then on rather g
eral principles that the fieldu must vanish rapidly as one
moves into the bulk away from interfaces. We then have
following rather weak constraints onJ.

~i! J must be chosen such thatmW grows and the fieldsW
orders.

~ii ! If the system satisfies naive scaling thenJ must go as
O(L21) in the bulk.
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The form for J in the bulk which fulfills these require
ments is given by

J~1!5sgn„m~1!…$g0~1!1g1~1!@¹m~1!#21•••%,

whereg0(1) andg1(1) must go asL21 for long times.
Let us now look at how this separation process car

over to the case of a continuous order parametern.1. In-
serting Eq.~10! into Eq.~3! generates an equation of motio
for uW (1) of the form

L~1!ui~1!52Vi„sW ~1!1uW ~1!…2L~1!s i~1!

52Vi„sW ~1!1uW ~1!…2s i ; jL~1!mj~1!

1s i ; jk¹amj¹amk . ~22!

We assume thatmW satisfies the nonlinear equation of motio

L~1!mW ~1!5JW ~1!, ~23!

whereJW has the same interpretation as in the scalar c
Inserting Eq.~23! back into Eq.~22! gives the basic equatio
of motion for uW ,

L~1!ui~1!52Vi„sW ~1!1uW ~1!…2s i ; jJ j~1!

1s i ; jk¹amj¹amk . ~24!

In the bulk we self-consistently assume that the potential
be expanded in powers ofuW ,

Vi„sW ~1!1uW ~1!…5Vi„sW ~1!…1Vi j „sW ~1!…uj~1!1•••.
~25!

The two terms on the right-hand side of Eq.~25! can be
simplified using Eqs.~16! and~17! and lead to the new form
for Eq. ~24!:

L~1!ui~1!5
~n21!

m2
m̂i2q0

2m̂iuL1
~n21!

m2
ui

T2s i j J j~1!

1s i ; jk¹amj¹amk, ~26!

where we have divideduW into its longitudinal and transvers
parts:

ui5m̂iuL1ui
T , ~27!

where m̂•uW T50. Dotting m̂i into Eq. ~26!, we obtain the
equation determining the longitudinal part ofuW ,

m̂iL~1!ui~1!5
~n21!

m2
2q0

2uL1m̂is i ; jk¹amj¹amk

2m̂is i ; jJ j . ~28!

In the bulk, starting withc i5c0m̂i , we easily obtain

s i ; j5
c0

m
Pi j @mW #,
s

e.

n

m̂is i ; j'O(L23), m̂is i ; jJ j'O(L24), and the term propor-
tional to m̂is i , j can be dropped in Eq.~28! compared to the
terms ofO(1/m2). Next, since

s i ; jk52
c0

m2
~d i j m̂k1d ikm̂j1d jkm̂i23m̂im̂j m̂k!, ~29!

in the bulk, we have

m̂is i ; jk¹amj¹amk52
c0

m2
Pjk¹amj¹amk .

Using this result back in Eq.~28!, the equation of motion in
the bulk for the longitudinal part of the fluctuation field
given then by

m̂iL~1!ui~1!5
~n21!

m2
2q0

2uL2
c0

m2
Pjk¹amj¹amk .

~30!

All derivative terms in Eq.~30! acting onuW can be dropped
in comparison with theq0

2uL term in the scaling regime, and
to lowest order inL21, we can expressuL explicitly in terms
of mW :

q0
2uL5

1

m2
@~n21!2Pjk¹amj¹amk#. ~31!

Because of the mass term,q0
2.0, we see indeed thatuL is of

orderL22 and no additional constraints are put onJW .
Let us turn next to the transverse part ofuW . Multiplying

Eq. ~29! by the transverse projectorP we obtain

Pi j L~1!uj~1!5
~n21!

m2
ui

T2Piksk jJ j~1!

1Pi l s l ; jk¹amj¹amk . ~32!

Then in the bulk

Piksk jJ j~1!5
c0

m
Pi j J j~1!5

c0

m
J i

T~1!, ~33!

and, using Eq.~29!,

Pi l s l ; jk¹amj¹amk522
c0

m2
~m̂k¹amk!Pi j ¹amj .

~34!

Setting Eqs.~33! and ~34! back into Eq.~32! gives

Pi j L~1!uj~1!5
~n21!

m2
ui

T2
c0

m
J i

T~1!

22
c0

m2
~m̂k¹amk!Pi j ¹amj
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which governs the transverse fluctuations. For s
consistencyuW T must be small in the bulk. This requires us
choose the transverse component ofJW to be given by

2
c0

m
J j

T~1!22
c0

m2
~m̂k¹amk!Pi j ¹amj50

or

J i
T~1!52

2

m
~m̂k¹amk!Pi j ¹amj . ~35!

With this choice, the equation for the transverse fluctuati
is given by

Pi j L~1!uj~1!5
~n21!

m2
ui

T .

Thus we have thatui
T is generated by any coupling back

uL'O(1/L2) via Pi j L(1)uj (1). We canestimate

ui
T'L2Pi j L~1!uL~1!'O~1/L2!,

and generallyuW 'O(1/L2). The requirement that the bul
part of the transverse fluctuationsuW T be small fixes the form
of JW T to be given by Eq.~35!. This form does not depend o
any details of the potential, and can be simplified. Consi

2

m
m̂k¹amk5

1

m2
¹am25

2

m
¹am

and

Pi j ¹amj5m
]m̂i

]mj
¹amj5m¹am̂i .

Inserting these last two results back into Eq.~35! gives

J i
T~1!52

2

m
~¹am!m¹am̂i522¹am¹am̂i . ~36!

The equation of motion satisfied bymW is given by Eq.
~23!. While the transverse part ofJW is given by Eq.~36!, the
longitudinal part ofJW is constrained only by the requireme
that it scale asL21. The precise form forJL in the scaling
regime must be determined self-consistently within pertur
tion theory. If we look at the building blocks in the proble
we see that the quantities that are ofO(1) arem̂ and¹ami .
Thus one sees that the structure of the longitudinal part of
equation of motion in the bulk scaling regime can be
sumed to be of the general form:

J i
L~1!5m̂i~1!$g0~1!1g1~1!@¹amj~1!#2

1gs jkl
(2) ~1!¹ams~1!¹amj~1!¹bmk~1!

3¹bml ~1!1•••%.

Clearly in the long-time limit we require theg’s be of
O(L21) and, as we shall see, that we can self-consiste
f-

s

r

-

e
-

ly

construct thegp’s if we assume thatgp5O(p) in the vertex
expansion. Our final results at second order in our expan
will depend ong0 andg1.

The assumption we make here is that the higher-or
terms proportional tog(l ), for l .0, contribute in a non-
trivial way starting at orderl 12. Thusg(2), due to various
contractions, act at second order only to renormalizeg0.

IV. FIELD THEORY FOR AUXILIARY FIELD

The equation of motion satisfied by the ordering fieldmW
including terms which contribute up to second order is giv
in the bulk by

L~1!mi~1!5g0~ t1!m̂i~1!1J̃ i~1!, ~37!

whereJ̃ i(1)5J̃ i
L(1)1J i

T(1), and

J̃ i
L~1!5g1~ t1!m̂i~1!@¹amj~1!#2,

J i
T~1!522¹am~1!¹am̂i~1!.

The functionsg0(t1) andg1(t1) are determined within per
turbation theory. Our analysis will follow the standa
Martin-Siggia-Rose~MSR! @13# method in its functional in-
tegral form as developed by DeDominicis and Peliti@14# and
presented in detail in paper I. In the MSR method the fi
theoretical development requires a doubling of fields to
clude the response fieldMW . As in paper I, we introduce a
field hW (1) conjugate tomW (1) and a fieldHW (1) conjugate to
MW (1).

Following closely the formal development in paper I, w
find that the fundamental equation satisfied by the averag
the fieldmW , in the presense of sources, is given by

i @L~1!^m~1!&h2Q~1!#52E d2 P0~12!^M ~2!&h1H~1!

~38!

where the vector labels are suppressed,

P0
i j ~12![d~ t12t0!d~ t12t2!g~rW12rW2!d i j .

It is assumed here that the fieldmW (1), at theinitial time t0
has Gaussian statistics with variance

^m0
i ~rW1!m0

j ~rW2!&5d i j g~rW12rW2!.

The nonlinear vertices in Eq.~38! are given by

Qi~1!5^J i~1!&[Qi
D~1!1Qi

L~1!1Qi
T~1!,

with

Qi
D~1!5^J i

D~1!&5g0~1!^m̂i~1!&,

Qi
L~1!5^J i

L~1!&5g1~1!^m̂i~1!@¹mj~1!#2&,

Qi
T~1!5^J i

T~1!&5~22!^¹am~1!¹am̂i~1!&.
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The fundamental equation satisfied by the average of
MSR response field is given by

2 i @L̃~1!^M ~1!&h1Q̃~1!#5h~1!, ~39!

where we define

L̃~1!5
]

]t1
1¹1

2,

and the nonlinear contributions are given by

Q̃i~1!5^J̄ i~1!&5Q̃i
D~1!1Q̃i

L~1!1Q̃i
T~1!,

with

Q̃i
D~1!5^J̄ i

D~1!&5g0~1!^M j~1!r i j ~1!&,

Q̃i
L~1!5^J̄ i

L~1!&

5^M j~1!g1~1!r i j ~1!@¹amk~1!#2&

2^¹a@M j~1!g1~1!m̂j~1!2¹ami~1!#&

and

Q̃i
T~1!5^J̄ i

T~1!&

5^2m̂i~1!¹a@M j~1!¹am̂j~1!#

12r i j ~1!¹a@M j~1!¹am~1!#&,

and

r i j ~1!5
1

m
~d i j 2m̂im̂j !.

All correlation functions of interest can be generated
functional derivatives of̂m(1)&h or ^M (1)h with respect to
h(1) andH(1). In thelimit in which the source fields van
ish, each term in the two fundamental equations van
Therefore it is derivatives with respect to the extern
sources of these equations which are of interest. Let us
troduce the notation thatGA1 ,A2 , . . . .,An

(1,2, . . .n) is thenth

order cumulant for the set of fields$A1 ,A2 , . . . .,An%, where
field A1 has argument(1), field A2 has argument(2), etc.
This notation is needed when have cumlants withm andM
mixed. As an example,

GMmmm~1234!5
d3^m~4!&h

dH~1!dh~2!dh~3!
. ~40!

As a short hand for cumulants involving onlym fields we
write

G(n)~12•••n!5
dn21

dh~n!dh~n21!•••dh~2!
^m~1!&h .

~41!

The hierarchy of equations connecting these cumulant
given by taking functional derivatives of the fundamen
equations given by Eqs.~38! and ~39!.
e

s

h.
l
n-

is
l

The equations governing thenth order cumulants are
given by

2 i @L̃~1!GMm•••m~12•••n!1Q̃n~12•••n!#50 ~42!

and

i @L~1!G(n)~12•••n!2Qn~12•••n!#

52E d1̄ P0~11̄!GMm•••m~ 1̄2•••n!, ~43!

where theQ’s are defined by

Q̃n~12•••n!5
dn21

dh~n!dh~n21!•••dh~2!
Q̃~1! ~44!

and

Qn~12•••n!5
dn21

dh~n!dh~n21!•••dh~2!
Q~1!. ~45!

With this notation the equations determining the two-po
functions can be written as

2 i @L̃~1!GMm~12!1Q̃2~12!#5d~12!, ~46!

i @L~1!G~12!2Q2~12!#52E d1̄ P0~11̄!GMm~ 1̄2!.

~47!

The point now is to show that there is a consistent pertur
tion expansion for this theory. To get started we need
expressQ̂i(1) andQi(1) in terms of a fundamental set o
vertices which can be written in terms of the singlet pro
ability distribution

Ph~xW ,1!5^d„xW2mW ~1!…&h .

After a great deal of rearrangement one can show that
nonlinear vertices, theQ’s can be put in the form

Qi
D~1!5g0~1!Ui~1!, ~48!

Qi
L~1!5(

j
E d2̄d3̄ g1~1!w~12̄3̄!Oj j ~ 2̄3̄!Ui~1!,

Qi
T~1!5(

jk
E d2̄d3̄ w~12̄3̄!Ojk~ 2̄3̄!U jk,i~1!,

Q̃i
D~1!52(

j
E d2̄d3̄ g0~1!OH j

~1!Ui , j~1!,

Q̃i
L,1~1!52(

jk
E d2̄d3̄ g1~1!w~12̄3̄!Okk~ 2̄3̄!

3OM j
~1!Ui , j~1!,
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Q̃i
L,2~1!52(

j
E d2̄d3̄ 2g1~1!w̃~12̄3̄!Oi~ 2̄!

3OM j
~ 3̄!U j~ 3̄!,

Q̃i
T,1~1!52(

jsl
E d2̄d3̄ w~12̄3̄!OM j

~1!

3Osl ~ 2̄3̄!Qsl ,i j ~1!,

Q̃i
T,2~1!52(

jsl
E d2̄d3̄ 2w̃~12̄3̄!OM j

~ 3̄!

3Ol ~ 2̄!Ui l , j~1!, ~49!

where we have introduced the operators

Oj~2!5
d

dhj~2!
1Gj

(1)~2!,

and

Ojk~23!5
d2

dhj~2!dhk~3!
1Gjk

(2)~23!1Gj
(1)~2!

d

dhk~3!

1Gk
(1)~3!

d

dhj~2!
1Gj

(1)~2!Gk
(1)~3!.

We have also introduced the three-point vertices

w~123!5 (
a51

d

¹a
(1)d~12!¹a

(1)d~13!

and

w̃~123!5¹a
~1!@d~13!¹a

1d~12!# .

Each term in these expressions for theQ’s can be expresse
in terms of the set of nonlinear vertices which are integ
moments ofPh@xW #:

Ui jk . . . ,l mn . . . ~1!5E dnx x̂i x̂ j x̂k•••¹x
l ¹x

m¹x
n
•••Ph@xW ,1#.

~50!

We have also defined

Qsl ,i j ~1!5Usl ,i j ~1!2Uis,l j~1!2Ui l ,s j~1!.

V. PERTURBATION THEORY EXPANSION

All of the cumulants involving the fieldmW can, in prin-
ciple, be obtained from Eqs.~38! and ~39! by taking func-
tional derivatives. This then requires that we work out t
functional derivatives ofQn and Q̃n which are defined by
Eqs. ~44! and ~45!. These objects are functional derivativ
of Q1 and Q̃1 which are proportional to a few of th
Ui jk . . . ,l mn . . . (1) and functional derivatives of these qua
tities. From this discussion it should be clear that all of t
Qn and Q̂n can be written as a product of cumulants mu
plying vertices given by
l

e

e

Ui jk . . . ,l mn . . . ,stu . . . ~1;234 . . .!

5
d

dhs~2!

d

dht~3!

d

dhu~4!
. . . Ui jk . . . ,l mn . . . ~1!.

The point we want to establish is that ifU has p vector
labels, then, at lowest order, we can takeU to be ofO(p/2
21), plus higher-order terms.

The perturbation theory expansion for th
Ui jk . . . ,l mn . . . (1) follows from the expansion properties o
the singlet-distribution function. The perturbation theory e
pansion forPh(xW ,1) is straightforward. Using the integra
representation for thed function, we have

Ph~xW ,1!5E dnk

~2p!n
e2 ikW•xW^eH(1)&h ,

whereH(1)[ ikW•mW (1). The average of the exponential i
precisely of the form which can be rewritten in terms
cumulants:

F~kW ,1![^eH(1)&h5expF (
s51

`
1

s!
GH

(s)~1!G ,

whereGH
(s)(1) is thesth-order cumulant for the fieldH(1).

SinceH(1) is proportional tomW (1) these are, up to factor
of ikW to thesth power, just the cumulants for them field:

GH
(1)~1!5 i(

a1

ka1
Ga1

(1)~1!,

GH
(2)~1!5~ i !2 (

a1a2

ka1
ka2

Ga1a2

(2) ~11!,

GH
(3)~1!5~ i !3 (

a1a2a3

ka1
ka2

ka3
Ga1a2a3

(3) ~111!,

and so on. We can therefore write

F~kW ,1!5expF (
s51

`
~ i !s

s!
ka1

ka2
•••kas

Ga1a2a3 . . . as

(s) ~11 . . . 1!G .

We will assume, as we will show self-consistently, th
pth-order cumulants are of orderp/221 in the vertex expan-
sion. Expanding and keeping terms up to the four-point
mulant, we obtain

Ph~xW ,1!5F12 (
a1a2a3

1

3!
Ga1a2a3

(3) ~111!¹x
a1¹x

a2¹x
a31•••G

3Ph
(0)~xW ,1!, ~51!

where

Ph
(0)~xW ,1!5E dnk

~2p!n
Fh

(0)~kW ,1!e2 ikW•xW ~52!

and

Fh
(0)~kW ,1!5ei (a1ka1

Ga1

~1!
~1!e21/2(a1a2ka1

ka2
Ga1a2

(2) (11).

We can define the lowest order set of vertices
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Ui jk . . . ,l mn . . .
(0) ~1!5E dnx x̂i x̂ j x̂k . . . ¹x

l ¹x
m¹x

n . . . Ph
(0)@xW ,1#

5E dnx x̂i x̂ j x̂k . . . ¹x
l ¹x

m¹x
n . . . E dnk

~2p!n
Fh

(0)~kW ,1!e2 ikW•xW

5E dnx x̂i x̂ j x̂k . . . E dnk

~2p!n
~2 ik l !~2 ikm!~2 ikn! . . . E dnk

~2p!n
Fh

(0)~kW ,1!e2 ikW•xW. ~53!
n
is

g
er
nt

n-
g
e a

are

r-
e

It should be clear, after inserting Eq.~51! back into Eq.~50!,
that

Ui jk . . . ,l mn . . . ~1!

5Ui jk . . . ,l mn . . .
(0) ~1!

1 (
a1a2a3a4

Ui jk . . . ,l mn . . . a1a2a3a4

(0) ~1!

3
1

4!
Ga1a2a3a4

(4) ~1111!1 . . . . ~54!

It is clear that if the term on the first line of Eq.~54! is of
O(p), then the term on the second line is ofO(p13).

For these ideas to be self-consistent then the functio
derivatives ofU (0) . . . must be higher order. The reason th
works is because factors of the one-point cumulantGi(1)
enters in the exponential appearing inFh

(0)(kW ,1) multiplied

by a factor of kW . Thus functional derivatives either brin
down factors ofkW from the exponential or increase the ord
of cumulants which do not involve the one-point cumula
To see how this works consider the set of derivatives

U . . . a3a4
~1;34!5

d2

dha3
~3!dha4

~4!
U . . .

(0) ~1!.

The functional derivatives then act onFh
(0)(kW ,1). It is then

easy enough to work out, using Eqs.~53! and ~52!, that

d2

dha3
~3!dha4

~4!
Fh

(0)~kW ,1!uh50

5 (
a1a2

ka1
ka2

@Ga1a3

(2) ~13!Ga2a4

(2) ~14!

2 1
2 Ga1a2a3a4

(4) ~1134!#F0
(0)~kW ,1!.

We then have

U . . . a3a4
~1;34!5 (

a1a2

U . . . a1a2

(0) ~1!@Ga1a3

(2) ~13!Ga2a4

(2) ~14!

2 1
2 Ga1a2a3a4

(4) ~1134!#

and if U . . .
(0) (1) is of O(p) then U . . . a1a2

(0) is of O(p11),

Ga1a2a3a4

(4) is of O(1), andU . . . a3a4
(1;34) is of O(p11)

plus higher-order terms.
al

.

Notice then that all derivatives ofU and higher order
terms can be expressed as products of the verticesU (0) with
legs connected by cumulants. Any contribution to the no
linear verticesQn andQ̃n can therefore be ordered summin
up the contributions from each vertex and cumulant wher
vertex with 2s12 legs makes a contribution ofO(s) and a
cumulantG(2p12) makes a contribution ofO(p).

For our purposes here, we only need two sets of the b
verticesU (0):

Vs~a1 ;a2 , . . . ,a2s12 ;1!

5E dnx x̂a1

3E dnk

~2p!n
~ i !ka2

ka3
•••ka2s12

Fh
(0)~kW ,1!e2 ikW•xW

and

Ṽs~a1 ,a2 ; . . . ,a2s12 ;1!

5E dnx x̂a1
x̂a2

3E dnk

~2p!n
ka3

ka4
•••ka2s12

Fh
(0)~kW ,1!e2 ikW•xW.

It can be seen theVs(a1 ;a2 , . . . ,a2s12 ;1) is the natural
generalization of the vertexfs(1) given by Eq.~92! in paper
I. As in paper I, it is straightforward to work out these ve
tices explicitly by doing the integrations. The quantities w
will need below are given by

V0~a1 ;a2 ;1!5da1 ,a2
A 2

S~1!

GS n12

2 D
nGS n

2D ,

V1~a1 ;a2 ,a3 ,a4 ;1!

5I a1 ,a2 ,a3 ,a4
A 2

S3~1!

GS n11

2 D
n~n12!GS n

2D ,

Ṽ0~a1 ,a2 ;1!5da1 ,a2

1

n
,
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and

Ṽ1~a1 ,a2 ;a3 ,a4 ;1!

5
1

S~1! F1

n
da1 ,a2

da1 ,a2
2

1

n12
I a1 ,a2 ,a3 ,a4G .

We have also introduced

S~1![Gaa
(2)~11!5^ma

2~1!&,

with no summation overa, and the symmetric tensor

I a1 ,a2 ,a3 ,a4
5da1 ,a2

da3 ,a4
1da1 ,a3

da2 ,a4
1da1 ,a4

da2 ,a3
.

A. Two-point nonlinear vertices to second order

Armed with these results we can return to the evaluat
of the Qn andQ̃n derived fromQ1 andQ̃1 which are given
by Eqs.~48! and~49!. We summarize first the results for th
two-point quantities which enter Eqs.~46! and~47!. We find
after a significant amount of work that

Q2~12!5V~11̄!G~ 1̄2!1S̃~12̄3̄4̄!G~ 2̄3̄4̄2!, ~55!

Q̃2~12!5V~11̄!GMm~ 1̄2!1S̃1~12̄3̄4̄!GMmmm~ 2̄3̄4̄2!,
~56!

where integration and summation over repeated barred i
ces is implied. The various auxiliary quantities are defin
by

V~12!5@g0~1!1g1~1!S(2)~1!#V0~a1 ;a2 ;1!d~12!,
~57!

S̃~1234!5
1

3!
Ṽ0~1234!1ṼL~1234!1Ṽ1~1234!, ~58!

S̃1~1234!5
1

2
Ṽ0~1234!1ṼL~1234!1Ṽ2~1234!

1Ṽ3~1432!1ṼL
T~1432!, ~59!

Ṽ0~1234!52g0~1!V1~a1 ;a2 ,a3 ,a4 ;1!d~12!d~13!d~14!,

ṼL~1234!5g1~1!V0~a1 ;a2 ;1!da3a4
W~134!d~12!,

Ṽ1~1234!5Ṽ1~a3 ,a4 ;a1 ,a2 ;1!da3a4
W~134!d~12!,

Ṽ2~1234!52W~134!d~12!Q a3 ,a4 ,a1 ,a2

(0) ~1!,

Ṽ3~1234!522Ṽ1~a1 ,a3 ;a4 ,a2 ;1!W̃~134!d~12!,

ṼL
T~1234!522g1~4!V0~a4 ;a2 ;4!da1 ,a3

W̃~134!d~24!,

and
n

i-
d

Q a3a4 ,a1 ,a2

(0) ~1!52Ṽ1~a3 ,a4 ;a1 ,a2 ;1!

1Ṽ1~a1 ,a3 ;a4 ,a2 ;1!

1V1̃~a1 ,a4 ;a3 ,a2 ;1!,

S(2)~1!5(
i

^¹ ima~1!¹ ima~1!&,

where there is no summation overa. These results give a
closed solution for the two-point correlation functions at z
roth order. This analysis of this lowest-order solution
given in the next section. In the following section we analy
the four-point correlation functions needed in order to extr
the two-point correlation functions at second order.

VI. ZEROTH-ORDER THEORY FOR TWO-POINT
CORRELATION FUNCTIONS

The equations of motion at zeroth order for the two-po
correlation functions are given by the coupled set of E
~46! and~47! with the lowest-order contributions forQ2 and
Q̃2 given the leading-order terms in Eqs.~55! and ~56!. In-
serting

Q2
(0)~12!5V~11̄!G~ 1̄2!,

Q̃2
(0)~12!5V~11̄!GMm~ 1̄2!

into Eqs.~46! and ~47! and explicitly writing the vector la-
bels, we obtain

2 i @L̃~1!1v0~1!#GMa1
ma2

(0) ~12!5d~12!da1 ,a2
,

i @L~1!2v0~1!#Ga1 ,a2

(0) ~12!

52E d1̄ P0~11̄!GMa1
ma2

(0) ~ 1̄2!,

where we have defined

v0~1!5@g0~1!1g1~1!S(2)~1!#V0~a1 ,a1 ;1!.

We see at once that the solution to this set of equation
diagonal in the vector indices,

Ga1 ,a2

(0) ~12!5da1 ,a2
G(0)~12!

and

GMa1
ma2

(0) ~12!5da1 ,a2
GMm

(0) ~12!,

whereG(0)(12) andGMm
(0) (12) are the same quantities foun

in the scalar case in paper I. We summarize briefly the res
since they are needed here. At long times we can write

v0~ t !5
v

tc1t
, ~60!

wherev is a constant we will determine andtc is a short-
time cutoff which depends on details of the early-time ev
lution. One has then that the response function is given
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GMm
(0) ~r ,t1t2!5GMm

(0) ~r ,t2t1!

52 iu~ t22t1!S t11tc

t21tc
D v e2[ r 2/4(t22t1)]

@4p~ t22t1!#d/2
,

whererW5rW12rW2, the correlation function is given by

G(0)~r ,t1t2!5g~0!S t11tc

tc
D vS t21tc

tc
D v e2r 2/8T

~8pT!d/2
,

~61!

whereg(0) is the on-site value of the initial correlation fun
tion, and it is convenient to define

T5
t11t2

2
.

If we are to have a self-consistent scaling equation t
the autocorrelation function (r 50), at large equal timest1
5t25t, must satisfy

S(0)~ t !5g~0!S t

tc
D 2v 1

~8pt !d/2
[A0t.

Clearly this result fixes the exponent

v5
1

2 S 11
d

2D
and the amplitude

A05
1

~ tc!
2v

g~0!

~8p!d/2
. ~62!

Equation~61! can be rewritten in the convenient form

G(0)~r ,t1t2!5AS(0)~ t1!S(0)~ t2!F (0)~ t1 ,t2!e21/2r 2/(4T),

where

F (0)~ t1 ,t2!5SAt1t2

T D d/2

.

The nonequilibrium exponent is defined in the long-tim
limit by

G(0)~0,t1 ,t2!

AS0~ t1!S0~ t2!
5F (0)~ t1 ,t2!5SAt1t2

T D l

and we obtain the OJK resultl5d/2. Looking at equal times
we have the auxiliary field scaling function

f 0~x!5
G(0)~r ,tt !

S(0)~ t !
5e2x2/2,

where the scaled length is defined byxW5rW/L(t), and the
growth law is given byL2(t)54t. The exponentn, defined
by Eq. ~71!, is zero in the OJK approximation.
n

A. Four-point correlation functions at first order

If we are to evaluateG(2) andGMm to second order, we
see that we must evaluate the four-point quantitiesG(4) and
GMmmm to first order in the vertex expansion. This requir
the evaluation ofQ4 and Q̃4. Using the same technique
developed in evaluatingQ2 andQ̃2 we find

Q̃4~1234!5V~11̄!GMmmm~ 1̄234!

1S̃1~12̄3̄4̄!PM~ 2̄3̄4̄,234!, ~63!

where V(12) and S̃1(1234) are defined by Eqs.~57! and
~59!, respectively, while

PM~283848,234!5GMm~482!@G~383!G~284!

1G~384!G~283!#1GMm~483!

3@G~382!G~284!1G~384!G~282!#

1GMm~482!@G~382!G~283!

1G~383!G~282!#. ~64!

We also have

Q4~1234!5V~11̄!G(4)~ 1̄234!1S̃~12̄3̄4̄!P~ 2̄3̄4̄,234!,
~65!

whereS̃(1234) is given by Eq.~58! and

P~283848,234!5G~482!@G~383!G~284!

1G~384!G~283!#1G~483!

3@G~382!G~284!1G~384!G~282!#

1G~482!@G~382!G~283!

1G~383!G~282!#.

Inserting Eq.~63! for Q̃4 into Eq.~42! we see that we can
do a partial integration and write

GMmmm~1234!5GMm
(0) ~11̄!iS̃1~ 1̄2̄3̄4̄!PM~ 2̄3̄4̄,234!,

~66!

whereS̃1 is defined by Eq.~66!. Using the symmetry prop-
erties of PM(2̄3̄4̄,234) we can show that Eq.~66! can be
written as

GMmmm~1234!5GMm
(0) ~11̄!Vs~ 2̄;1̄3̄4̄!PM~ 2̄3̄4̄,234!,

~67!

where

Vs~2;134!5
i

2
Ṽ0~1234!1 iṼL,s~2,134!1 iṼ1,s~2,134!

and the symmetrized vertices are given by

ṼL,s~2,134!5ṼL~2134!1ṼL~2,413!1ṼL~2,314!

and
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Ṽ1,s~2,134!5Ṽ1~2134!1Ṽ1~2,413!1Ṽ1~2,314!.

In turn Eqs.~67! and~65! can be put back into Eq.~43! with
n54 to obtainG(4). After manipulations it can be written in
the properly symmetric form

G(4)~1234!5
1

3
GmM

(0) ~11̄!Vs~ 1̄;2̄3̄4̄!P~ 2̄3̄4̄,234!

1
1

3
GmM

(0) ~21̄!Vs~ 1̄;2̄3̄4̄!P~ 2̄3̄4̄,134!

1
1

3
GmM

(0) ~31̄!Vs~ 1̄;2̄3̄4̄!P~ 2̄3̄4̄,124!

1
1

3
GmM

(0) ~41̄!Vs~ 1̄;2̄3̄4̄!P~ 2̄3̄4̄,123!.
th
We see after these manipulations that all of the first-or
corrections have been combined into a single vertex.

VII. TWO-POINT CORRELATION FUNCTION
AT SECOND ORDER

A. General equations

Given G(4) and GMmmm at first order, we can return to

Eqs. ~63! and ~56! to obtain Q2 and Q̃2 to second order.
These in turn are put back into Eqs.~46! and ~47! to obtain
the second-order results for the two-point correlation fu
tions. We focus here on the correlation function. After
single integration of Eq.~47! we have
G~12!5G(0)~12!1GmM
(0) ~11̄!

1

3
Vs~ 1̄;2̄3̄4̄!G4~ 2̄3̄4̄2!1G(0)~11̄!Vs~ 2̄;1̄3̄4̄!GMmmm~ 2̄3̄4̄2!

5G(0)~12!1GmM
(0) ~11̄!

1

3
Vs~ 1̄;2̄3̄4̄!

1

3
Vs~ 1̄8;2̄83̄84̄8!@GmM

(0) ~21̄8!P~ 2̄83̄84̄8,2̄3̄4̄!1GmM
(0) ~ 2̄1̄8!P~ 2̄83̄84̄8,23̄4̄!

1GmM
(0) ~ 3̄1̄8!P~ 2̄83̄84̄8,22̄4̄!1GmM

(0) ~ 4̄1̄8!P~ 2̄83̄84̄8,22̄3̄!#

1G(0)~11̄!Vs~ 2̄;1̄3̄4̄!GMm
(0) ~ 2̄1̄8!Vs~ 2̄8;1̄83̄84̄8!PM~ 2̄83̄84̄8,23̄4̄!.
rre-
e-

nd
al
sis

and
am-

art

s
te-
ents

he
This last term simplifies since, because of causality, only
term proportional toGMm(2̄82) in PM(2̄83̄84̄8,23̄4̄) sur-
vives, and

Vs~ 1̄8;2̄83̄84̄8!P~ 2̄83̄84̄8,2̄3̄4̄!

56Vs~ 1̄8;2̄83̄84̄8!G~ 2̄82̄!G~ 3̄83̄!G~ 4̄84̄!.

We then have the final formal expressions

G~12!5G(0)~12!1G(S)~12!1G(U)~12!1G(U)~21!,

where thesymmetriccontributions are given by

G(S)~12!5
2

3
GmM

(0) ~11̄!GmM
(0) ~21̄8!Vs~ 1̄;2̄3̄4̄!

3Vs~ 1̄8;2̄83̄84̄8!G(0)~ 2̄82̄!

3G(0)~ 3̄83̄!G(0)~ 4̄84̄!

and theunsymmetriccontributions are given by

G(U)~12!52GmM
(0) ~11̄!G(0)~22̄8!Vs~ 1̄;2̄3̄4̄!

3Vs~ 1̄8;2̄83̄84̄8!GmM
(0) ~ 2̄1̄8!

3G(0)~ 3̄83̄!G(0)~ 4̄84̄!.
e The detailed analysis of these contributions to the co
lation function follows closely the analysis developed in d
tail in paper I. Indeed if the full vertexVs is replaced by
( i /2)Ṽ0 andn set to 1, these equations reduce to those fou
in paper I. One can again carry out explicitly the intern
spatial integrations. Among the new elements in this analy
is the treatment of the gradient insertions in the vertices
the internal vector sums. One must also introduce the par
eter

g5g1~1!V0~a1 ;a1 :1!S~1!,

which, as anticipated earlier, requires thatg1(1) go asL21

for long times with an amplitude which is determined as p
of the scaling structure.

B. Extraction of indices

As in paper I, all of the various logarithmic singularitie
found in second order, and arising from internal time in
grations, can be absorbed into expressions for the expon
v, l, and n. At second order in the vertex expansion t
exponents are determined by the set of equations

l5
d

2
1v2

2d11

3d/2
HS ~68!

and
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n

2
5v22d11FHU1

HS

3d/2G , ~69!

where the quantitiesHU andHS are given below. The con
dition that the growth lawL't1/2 be maintained order by
order in perturbation theory determines the parameterv,
and, as in paper I, can be expressed in terms of the expo
n:

2v1
n

2
511d/2. ~70!

There are two intrinsically different contributions,HU and
HS , to the second-order expressions for the correlation fu
tions which come from graphs with different structures.HU
andHS , which depend only on the parametersv, g, d, and
n, are defined in terms of a set of auxiliary quantities:

HS5QS
(0)Md1QS

(2)Md12 ,

HU5QU
(0)Kd1QU

(6)Kd
(6)1QU

(9)Kd
(9) ,

where

QS
(0)5

1

2~n12! S 12
d

v
S(2)D ,

QS
(2)5

d

18v2
@~d15!S(3)12~d21!S(4)#,

QU
(0)5

3

2~n12! S 12
d

v
S(2)D ,

QU
(6)5

2

v2
S(3),

QU
(9)5

4

v2
S(4),

and theS( i ) are basically the result of internaln-vector sums,

S(2)52
2~n21!

3n
1

~n12!

3
g,

S(3)5
2~n21!

n~n12!
1ng2,

S(4)5
~n22!~n21!

n2~n12!
2

2~n21!

n
g1g2.

The constantsg andv parametrize the scaling properties
the nonlinear terms in the equation of motion for the aux
iary field. Finally, we have thed-dependent integrals

Md5E
0

1

dz
zd/221

@11z#d
5

1

2

G2~d/2!

G~d!
, ~71!
ent

c-

-

Kd
(0)5E

0

1

dz
zd/221

@~11z!~32z!#d/2
, ~72!

Kd
(6)5

d

4E0

1

dz
zd/221

@~11z!~32z!#d/2

z

~11z!2

3F12
2~12z!

~32z!
1~d12!

~12z!2

~32z!2G ,

Kd
(9)52

d

4E0

1

dz
zd/221

@~11z!~32z!#d/2

z

~11z!~32z!

3F12~d12!
~12z!

~32z!G . ~73!

If we setn51 andg50 then this set of equations reduces
that found in I. Then Eqs.~69! and~70! can be solved forv
andn and the results inserted in Eq.~68! to obtain the index
l as given in paper I.

The parametersv and g should be thought of as bein
generated by some type of renormalization group~RG!
analysis. Carrying forward the RG analogy, these parame
are to be determined as part of finding the scaling fixed po
in the problem. This process is similar to finding a fixe
point Hamiltonian in critical phenomena. The parameterv
occurs naturally at lowest order in the perturbation the
expansion, whileg naturally arises at second order in th
expansion.v andg are determined by the requirements th
the scaling lawL't1/2 and the index relationn52l2d hold
at all orders. The maintenance of the growth law leads to
condition given by Eq.~70!. The requirementn52l2d is
enforced by choosing

HU50. ~74!

While there are many possible ways of extracting expl
numbers for the indices from the perturbation expansion
described, we discuss two here. In theexpansionmethod we
setv5v05 1

2 (11d/2) in the second-order terms and obta
the indices directly. In the second method we look for
self-consistent solution of Eqs.~70! and ~74! for g and v.
For larged andn these two approaches are equivalent. Wh
the variousd-dependent integrals,Kd

( i ) , etc. can be worked
out analytically for specific values ofd, the expressions are
not very illuminating. Numerical values forl, n, andg are
given in Tables I, II, and III. Except for the values ofl
maked by an *, whose significance is discussed below,
values ofn are given byn52l2d and v is given by Eq.
~74!. One sees that the self-consistent values forl are all
close to the OJK values. The perturbation theory results
lead to much larger corrections.

It is instructive to work out the large-d limit analytically.
For generaln, one finds a solution of Eq.~74! in the limit
with

g5
3

~n12! S 1

4
1

2~n21!

3n D .

This expression forg has a minimum value of 1/4 forn
51, a maximum of 7/16 forn52, and then a slow decay t



ns

o

q

ra

v
e

rs to
the
to
on

an-
en-
ted
ion
re,
in-
h
-

ntly
of

ar

ling
rse

e,
sless,
m-
be

that
the

n

ici-
ome

ua-

t

ary

hat

r
s

t

te

1100 PRE 61GENE F. MAZENKO
zero as a function ofn. For the scalar case the contributio
to n andl5d/21n/2 are given to leading order by

n5
A2p

96

d3/2

3d/2
,

which gives exponential decay to zero for larged. For large
n the exponents are also given by the OJK result, with c
rections of the forml5d/21l1(d)/n1•••, where the pre-
cise dependence ofl1 on d is complicated.

This procedure for fixing the coefficientsv andg works
straightforwardly for the scalar case and generally ford
.n. However, ford,n one finds, for small enoughd, that
the new spin-wave contributions@proportional to (n21) in
theS( i )] lead to a breakdown in this process. Solutions to E
~74! do not exist and one cannot enforce the relationn
52l2d. In this case we have choseng such thatHU is a
minimum. The structure of the theory forn.d needs further
work. This is just the regime where one does not gene
stable topological defects.

VIII. CONCLUSIONS

It has been shown how one can extend the method de
oped previously for a scalar order parameter to the cas

TABLE I. Values of exponentl. In the second column pe
refers to values from the current theory fully expanded, sel refer
a self-consistent solutions from the current theory, TUG refers
values from Ref.@4#, OJK refers to the values from Ref.@3#, and
num refers to numerically determined values. An asterisk indica
that no solution to Eq.~74! was found.

Dimension n51 n52 n53

per 0.5819 0.8120 1.1172*
sel 0.5154 0.5590 0.6206*

1 TUG 1.0 0.699 0.622
OJK 0.5 0.5 0.5
num 0.648b

per 1.0530 1.2045 1.5326*
sel 1.0059 1.0227 1.0597*

2 TUG 1.2887 1.171 1.117
OJK 1.0 1.0 1.0
num 1.24660.02a

per 1.5375 1.6284 1.8240
sel 1.5024 1.5082 1.5216

3 TUG 1.6726 1.618 1.587
OJK 1.5 1.5 1.5
num 1.83860.2a

large d/2 d/2 d/2

aFrom Ref.@10#.
bFrom Ref.@15#.
r-

.

te

el-
of

then-vector model. The approach developed here appea
be a rather general tool for looking at field theories where
field is growing and showing scaling behavior. One is able
develop a systematic expansion in the number of labels
the nonlinear vertices appearing in the problem. This exp
sion leads directly to expressions for the anomalous dim
sions in the problem. Less generally one is then confron
with the interpretation of the perturbation theory expans
in a particular realization of the theory. As organized he
the self-consistent corrections to the OJK results for the
dicesl andn are typically quite small and vanish for bot
larged andn. The larged convergence is tied to the enforce
ment of the equationn52l2d relating the indices.

The transverse degrees of freedom enter quite differe
into the problem compared with the longitudinal degrees
freedom. The longitudinal contributions to the nonline

terms in the equation of motion for the auxiliary fieldmW must
be determined self-consistently in constructing the sca
properties in the problem. The contributions to the transve
part of the equation of motion for the auxiliary field ar
because the transverse degrees of freedom are mas
fixed by the requirement, for self-consistency, that the a
plitude for the transverse order-parameter fluctuations
small compared to the ordered component. It turns out
the transverse contributions to the equation of motion for
auxiliary field are sufficiently strong, for fixedn.3 and suf-
ficiently smalld, that we are unable to enforce the conditio
n52l2d. This regime requires further study.

The point of view developed here is somewhat unant
pated. In the most direct approach, as discussed in s

detail in paper I, one makes the substitutionsW 5sW @mW # into
the order-parameter equation of motion to obtain the eq

tion of motion formW . The path taken here is quite differen

since the equation of motion formW is constructed self-

consistently. The surprising point is that the quantityJL(mW ),
which enters the equation of motion satisfied by the auxili

field, is not determined when we insertcW 5sW 1uW into the
order-parameter equation of motion. It is this freedom t

allows us to construct the scaling regime form forJL(mW ).

to
o

s

TABLE III. Values of exponentn. An asterisk indicates that no
solution to Eq.~74! was found.

Dimension n51 n52 n53

1 3.0873231022 1.18183631021 1.7438*
2 1.1704031022 4.53044031022 1.3928*
3 4.8000031023 1.64520031022 4.314931022
TABLE II. Values of parameterg. An asterisk indicates that no solution to Eq.~74! was found.

Dimension n51 n52 n53

1 7.642363224231021 1.2448881672 1.3940000000*
2 5.117508757231021 9.344275691731021 1.2310000000*
3 4.267414407731021 7.930089111331021 1.0569791347

large 0.25 0.4375 0.416666
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