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Perturbation expansion in phase-ordering kinetics. Il.n-vector model
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The perturbation theory expansion presented earlier to describe the phase-ordering kinetics in the case of a
nonconserved scalar order parameter is generalized to the casers¥elotor model. At lowest order in this
expansion, as in the scalar case, one obtains the theory due to Ohta, Jasnow, and K@a§akihe
second-order corrections for the nonequilibrium exponents are worked out expliaitlgimensions and as a
function of the number of components of the order parameter. In the formulation developed here the
corrections to the OJK results are found to go to zero in the larged d limits. Indeed, the large-
convergence is exponential.

PACS numbgs): 05.70.Ln, 64.60.Cn, 64.60.My, 64.759

. INTRODUCTION with / labels can be self-consistently taken to beOdf /2
—1). This, in turn, leads to the result that théh-order
A perturbation theory expansion for treating the scalingcumulant is also of ordeDc(//2—1). We will refer to this
features of phase-ordering kinetics in unstable systglhs expansion as theertex expansiams in the scalar case, this
was presented earlig2] for the case of a nonconserved sca-expansion is well behaved in the lowest orders of perturba-
lar order parameter. In this paper this method is extended ttion theory. We obtain nontrivial values for the nonequilib-
the case of a vector order parameter witbomponents. Itis rium exponents at second order in perturbation theory by
found that spin-wave degrees of freedom introduce someéxponentiating diverging logarithms that are driven, for gen-
new elements into the theory. However, as in the scalar caselal dimensionalityd, by internal time integrations.
the Ohta, Jasnow, and Kawas&®iJK) theory[3,1] emerges
as the zeroth-order approximation and at this order the non- Il. OVERVIEW

equilibrium indices\ andv do not depend on the number of i . o
components of the order parameter. The second-order cor- We study here the phase-ordering kinetics generated by

. . : the time-dependent Ginzburg-Landé&IDGL) model satis-
rections to these exponents are determined as functiods of fied b q q - .
andn, and these corrections vanish for both lachandn. led by a nonconserved vector order parametdr.t) (i

The theory developed in paper | and here is a two-step= 1.2,...n),
process which builds on earlier wof#]. First one maps the b SE
- I
original problem for the order parametgronto one for an T _F_&U + 7, 1)
I

auxiliary field m. The field configurations associated with
the properly chosen auxiliary field are smoother and therewhereI" is a kinetic coefficientF is a Ginzburg-Landau
fore easier to treat than for the order parameter. The secorsifective free energy assumed to be of the form

step is to treat the nonlinear field theory satisfiedﬂuylt is .

found in both scalar and continuous>1) cases that one _f q¢ (E >
must construct, as one constructs a fixed-point Hamiltonian a r 2 &
in critical phenomena, the equation of motion satisfied by the

auxiliary field in the scaling regime. A unique aspect in thewhere c>0 and the potentiaV is assumed to be of the
development is the conjecture that there is a general relatioéymmetric degenerate wine-bottle forki= V(J/Z). We ex-

v=2\—d connecting the nonequilibrium indices. This rela- o oniy these general properties\ofwill be important in
tion, and the self-consistent maintenance of tH& growth N . .
our analysis.n is a thermal noise that is related foby a

law for this problem, fixes the form of the auxiliary field fluctuation-dissipation theorem. We assume that the quench

equation of motion at second order in the perturbation f high t ureT(>T h th ¢ .
theory. An important consequence of this procedure is that, rom a high temperatureT{>T), where the system is

the second-order contributions to the indices are expone -'Sordf-‘re‘i" to zero temperature, where the noise can be set to
tially small in the larged limit. In the continuous case it is Z€ro (7=0). Itis believed[1] that our final results are inde-
only the longitudinal part of the auxiliary field equation of Pendent of the exact nature of the initial state, provided it is
motion which must be determined self-consistently. The2 disordered state with short-ranged correlations. _
transverse part is unambiguously determined by consider- If we rescale length and times we can put our equation of
ation of the spin-wave degrees of freedom. motion in the dimensionless form

The nature of the perturbation expansion introduced in R
paper | is elucidated further here. For generdlcan be seen A(L) (1) = —V-(:Z(l))= _ V((1)) 3)
that one can develop an expansion of the nonlinear terms in : ! o ag(1)
the auxiliary field equations of motion in terms of a set of
vertices labeled by its number of spin labgH. A vertex  where the diffusion operator

d
;1 (Vo) 24 V() |, )

1
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J 2 a
A(1)=E—Vl (4) v=d—;, ()

is introduced along with the short-hand notation that 1 deWwhere is the eigenvalue that plays a prominent part in the
notes ¢1,t;). The standards* form for the potential is given theory developed in Refi4]. Similarly, generalizing the
by V=—1 1,7!2+ 1(4,7/2)2 analysis in Ref[10] for two-time correlation functions in the

° N : limit of large time separations, one can show that the non-

For late times, following a quench from the disordered to™ ™" =" -
guilibrium exponenh is given by

the ordered phase, the order-parameter dynamics obey sc&
ing [1] governed by a single growing length(t), which is a
characteristic of the spacing between defects. In this scaling A=d— —. 9
regime the order-parameter correlation function has a univer- 2

sal scaling form By eliminatinga/2u between Eqs(8) and(9) we obtain the

- - scaling relation given by Ed6).
C12=(d(1) - #(2)) = YAFx.11 1t), 9 given by Ed
I1l. AUXILIARY FIELD METHOD

where i, is the magnitude of the order parameter in the FOR THE n-VECTOR MODEL

ordered phase. The scaled lengthis defined as>2=(F1 _ _ _
_;2)/|_(T) where, for the nonconserved order-parameter qu goal here is to generahz_e the perturbation theory ex-
case considered here, the growth 1461 goes asL(T) pansion approach developed in paper | for a scalar order

~TY2\whereT=1(t;+1,). In the case of the autocorrelation parameter to the case of genamalWe will again express the

s s s order parameter as a sum of two pieces
functionr,;=r,=r we have[7] P P

>

J=o+u, (10)

A
@) | ©

(G -7 )| 22 R
where, as in Ref[12], o is the ordering component of the
order parameter that depends locally on meomponent

field m: o=o(m). The field U represents the fluctuations
about the ordered configuration. The functional dependence
of o onm is determined as a solution of the Euler-Lagrange
equation for the associated stationary defect problem

where\ is a nontrivial nonequilibrium exponent that enters

when eithert; or t, is much larger than the other. At equal

times the scaling functior(x)=F(x,1) is a nonanalytic

function of x for small|x|. This is best reflected in the gen-

eralized form of Porod’s 1ay8,9] as expressed in terms of

the Fourier transfornF(Q)~Q ("% for large scaled wave 5

numberQ. The largex behavior of the scaling function can, E ﬂzv-(a(m)) (11)

with proper definition ofx, be put in the formF(x) 7 am§ ' '

~(1ix")e~ W2 wherev is a nontrivial subdominant expo-

nent introduced in Ref4]. wherem is taken to be the coordinate and the solution must
Values for\ andv were found in paper | which suggested satisfy the boundary condition lig) . o= zpé. If we intro-

that they are independent. In earlier work in Ref0,11], duce the notation

within the approximation developed in R¢#], the two ex-

ponents were related by ¥ o,

Blo i)y (gmjl(gmjz...o’)mj/

v=2\—d. (6)
. . ) then Eq.(11) reads
We conjecture here that the relation given by Eg). holds
more generally and the perturbation theory must be con-
structed to respect this result. The argument leading to this > g, =Vi(a(m)). (12)
conjecture follows from the assumption that in the bulk scal- ’

?ngareglme and away from defect; the only available vector One can obtain the defect profile analytically for the case
is /(1) and the potential contribution to the order-parametegf 5 general degenerate potential for the scalar order-

equation of motion must be of the form parameter case. In the particular case af‘apotential, one
obtains the usual interfacial kink solutiono[m]
V(1)) = — a (1) R =tanhfy2). For systems with continuou_s symmetry,
| L2(1) = >1, one does not have a closed form solution for the defect

profile even for they* potential. However, one can make
wherea is an unknown constant and, if we are to have scalS°Me general statements about the form of the profile in the
ing, the coefficient in Eq(7) must be proportional ta 2. In ordered bulk regime. For the loweshargedefects we can
Refs. [4] and [10] it was found thata= /2. With these Write the order-parameter profile in the forra[m]
assumptions one can follow the development in RRé&f.to =A(m)m, then the Euler-Lagrange equation reduces to an
show that the exponent can be written in the form equation for the amplitudé&(m) given by
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A"+

(n—=1) , A JV(A) tinuous cases, that controls the transition region between
A ml- oA (13 the defect core and the ordered bulk.

Let us look first at the simpler scaler order-parameter
Solutions of Eq.(13) for large m, in the bulk away from case. If the form given by Eq10) is inserted into the equa-
defect cores, in contrast to the scalar case which has an etien of motion given by Eq(4), we obtain, without approxi-
ponential approach to the ordered value, show an algebramation, the equation of motion far,

approach to the ordered value
A(Du(1)+o(HAL)M(1) =~V [o(1)+u(1)]

: (14) +o,(1)[Vm(1)]2
(18

2

A= g 1—§—2+...
m

where £2=(n—1)/V"(,). This solution requires that the
ordered value of the magnitude of the order parameter b
given by the solution t&/’ () =0, and, for the solution to

We assume that the equation of motion satisfiedbig of
fhe form,

be stable, we requiré” (i) =q3>0. There are some addi- A(D)m(1)=E(1), (19
tional general properties we need in the langeegime. If we
write whereE (1) is a functional ofm(1) and, if naive scaling is
to hold, we requireE~O(L~1). How one proceeds when
- VA A one does not have naive scaling will be discussed elsewhere.
Vi(o)= A a_m:V (Aym;, (15) Using Eq.(19) in Eq. (18) for u leads to an equation of
motion for the fieldu(1),
and use the expansion
A(Du(1)=—V'[o(1)+u(1)]+05(1)[VM(1)]?
2
VI =V (o) — oV (o) + =~y ~o(DED), (20
m m
Our goal then is to show that we can cho@3€l) such
then we have thatu is small in the bulk and near a defect. More quantita-
tively, in the bulk, we haves[m]— ¢y sgrim], while
Vi(o)=—m, lﬁo(n_l) +o. (16) limm . ULM]=0. To see how this works and to put some
' ' m? constraints org(1), wenote, ifu is small in the bulk, then

we can self-consistently expand
We also need the second derivative of the potential with

respect to the order parameter. Taking the derivative of Eq.  V'[o(1)+u(1)]=V'[o(1)]+V"[o(1)Ju(1)+---
(15) with respect too;, we obtain

:gz(l)+qgu(1)+~--.
R V'(A) 1(V'(A))’ _ _ .
Vi (m)= §;; T-i—a'i Tial A The equation of motion fou then takes the form in the bulk
VA .. [A(D+a3]u(D)=—op(D{1=[Vm(1) P} = oy (DE(D).
=Pij(m)——+mim;V"(A), (2D

o ) . In working in the bulk ordered regime, which makes the
where the transverse projection operator is defined by dominate contribution to the scaling properties, we can esti-
R . matem~L, V~L"!, andd/gt=L 2. Notice on the left-
Pij(m)= & —mm;.. hand side of Eq(21) thatu has acquired anassand, in the
long-time long-distance limit, the term wheuds multiplied

Evalubati_ngvi,-(m) in the bulk, where we can use E@L4),  py a constant dominates the derivative terms arisl given
we obtain by

Vi () = g2y — Py O 17 A5u(D) =~ ox(D{L-[YM(L) ]} - o3 (DE(D).
m2
In the limit of large|m| the derivatives otr go exponentially
whereq2=(n—1)/£. to zero and the right-hand side of EQ1) is exponentially
Armed with these results, we next discuss the equations gimall. Clearly we can construct a solution for u which is also
motion governing the fields andy. The idea is to separate exponentially small in the bulk. We have then on rather gen-

the original order-parameter equation of motion into equa-eral pnnmples that the fiela must vanish rapidly as one
. - - . ' moves into the bulk away from interfaces. We then have the
tions form andu which ensure that we do obtain ordering,

) Y following rather weak constraints d&.
fluctuations are small, and the zerosnofreflect the zeros of (i) = must be chosen such thﬁtgrows and the fieldr

the order parametaf/. The condition thatr govern the or-  orders.
dering requires that in the bulk, away from any defect cores, (i) If the system satisfies naive scaling tH&must go as
o?— 2 andu?—0. We expect, for both the scalar and con-O(L 1) in the bulk.
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The form for E in the bulk which fulfills these require- ﬁw o -~O(L‘ 3), m 0. J:on(l_—ét) and the term propor-

ments is given by tional to m; or; j can be dropped in Eq28) compared to the

E(l)zsgr(m(l)){go(l)+gl(l)[Vm(1)]2+ . .}, terms 0fO(1/m2) Next, since

wheregg(1) andg;(1) must go ag ~* for long times. 0 - - - IR
Let us now look at how this separation process carries  Ti;jk= — E(@jmk* Sim;+ jem; —3mimymy),  (29)

over to the case of a continuous order parameted. In-

serting Eq.(10) into Eq.(3) generates an equation of motion

n in the bulk, we have
for u(1) of the form

A(D)ui(1)=~Vi(a(1)+u(1)~ A(1)oi(1) M0,V oMV oMy = — iZP;kvamjvamK-
m

== Vi(o(1)+u(1))— i, ;A(1)m;(1) o _ _ o
Using this result back in Eq28), the equation of motion in
+0;ikV oMV oM. (22)  the bulk for the longitudinal part of the fluctuation field is

S . . _given then by
We assume thah satisfies the nonlinear equation of motion

(n-1)  , 4o

>~ OouL— — PiVamVomg.
m m

(30

A(L)M(1)=E(1), (23 miA(1)u(1)=

where £ has the same interpretation as in the scalar case.
Inserting Eq.(23) back into Eq.(22) gives the basic equation

of motion for U, All derivative terms in Eq(30) acting onu can be dropped

in comparison with th«qgu,_ term in the scaling regime, and,

A(D)u(1)= —V-(5(1)+ J(l))—o- E.(1) to lowest order ir. 1, we can express, explicitly in terms
i i =] >
of m
+Ui;jkVamjVamk . (24)
In the bulk we self-consistently assume that the potential can q%Uﬁ#[(n— 1) = PV om;V my]. (32

be expanded in powers of

Vi(a(1)+u(1)=V(a(1)+V;;(o(1)u;(1) + - - - Because of the mass terqf>0, we see indeed that is of
(25 orderL "2 and no additional constraints are put 8n

Let us turn next to the transverse partfofMuItipIying

The two terms on the right-hand side of E®@5) can be Eq. (29) by the transverse projectéwe obtain

simplified using Eqs(16) and(17) and lead to the new form
for Eq. (24): (n—1)
PiA(Duj(1)=— uf — PyoyE;(1)

(n_ 1). 2~ (n_ 1) T -
A(Duy(1)= ——=—m—gomiu + ———Uu; =0y Z;(1)
m m +Pi/0'/;jkvamjvamk. (32)
+ 07,5V oM VM, 28 Then in the bulk
where we have divided into its longitudinal and transverse o o
parts: P ka-k]'—'J(l)_ |]'—'](1)_ _’T(l) (33
=mu_+u/, 2 ,
Ui=mit @7 and, using Eq(29),
wherem-uT=0. Dotting m; into Eq. (26), we obtain the
equation determining the longitudinal part wf Pi o,V eV ,m= —2%(&kvamk)PijVamj .
' m
- n—1 - (34
A= g iV oMy
Setting Eqs(33) and (34) back into Eq.(32) gives

(n_l) UiT lﬂO,_,T

A1) == i (1)

In the bulk, starting withy; = ,m; , we easily obtain

- Yo -
Ui;jzﬁpij[m], _ZE("nkVarnk)pijV m
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which governs the transverse fluctuations. For self-construct theg,’s if we assume thag,=O(p) in the vertex
consistency]T must be small in the bulk. This requires us to €xpansion. Our final results at second order in our expansion

choose the transverse componentoto be given b will depend ongo andg;. . .
P Eo g y The assumption we make here is that the higher-order

v Vo - terms proportional tay”), for />0, contribute in a non-
- —OEjT(l)—Z—g(mkVamk)PijVamj =0 trivial way starting at order’+2. Thusg(®, due to various
m m contractions, act at second order only to renormalize
or IV. FIELD THEORY FOR AUXILIARY FIELD
2 . -
EiT(l)= - —(mV,m)P;;V,m. (35 The equation of motion satisfied by the ordering fieid
m including terms which contribute up to second order is given
With this choice, the equation for the transverse fluctuationd” the bulk by
is given by R ~
A(1)m;(1)=go(ty)m(1)+E;(1), 37
N (n-1) . _
PidDy(D)=———u; . whereZ;(1)=25(1)+E7(1), and
Thus we have than is generated by any coupling back to é!‘(l)=gl(tl)ﬁWi(l)[Vamj(l)]z,

u ~O(1/L?) via P;jA(1)u;(1). We canestimate
—_T -
Ei(1)=-2V,m(1)V,m;(1).
uf~L2P;A(1)u (1)~O(1/L?), (D) (DVami(1)
. 5 ) The functionsgy(t;) andg4(t;) are determined within per-
and generallyu~O(1/L%). The requirement that the bulk turbation theory. Our analysis will follow the standard
part of the transverse fluctuationd be small fixes the form  Martin-Siggia-Ros€MSR) [13] method in its functional in-
of 7 to be given by Eq(35). This form does not depend on tegral form as developed by DeDominicis and Péli#t] and

any details of the potential, and can be simplified. ConsidePresented in detail in paper I. In the MSR method the field
theoretical development requires a doubling of fields to in-

2. 1 , 2 clude the response fieldl. As in paper |, we introduce a
Emkvﬂmk_ﬁv"m “mVam field h(1) conjugate tan(1) and a fieldH(1) conjugate to
M(1).
and Following closely the formal development in paper |, we

find that the fundamental equation satisfied by the average of

P,V,m= m%vammearAni _ the fieldm, in the presense of sources, is given by
i
Inserting these last two results back into E86) gives ILA(L)(m(1)),—Q(1)]= —J’ d2 [Mp(12)(M(2))p+H(1)

) ) ) (38)
El(1)=- —(V,mmV,m=—2V,mv,m. (36

: where the vector labels are suppressed,

The equation of motion satisfied by is given by Eq. I (12)=8(t; — to) (11— ) g(r1—r2) & -
(23). While the transverse part & is given by Eq(36), the R
longitudinal part of= is constrained only by the requirement It is assumed here that the fiefd(1), at theinitial time to
that it scale a4 ~*. The precise form foE, in the scaling has Gaussian statistics with variance
regime must be determined self-consistently within perturba- L .
tion theory. If we look at the building blocks in the problem (mo(rymb(ra))=8;9(r;—ry).
we see that the quantities that areQff1) arem andV ,m;.
Thus one sees that the structure of the longitudinal part of th
equation of motion in the bulk scaling regime can be as-
sumed to be of the general form:

Zhe nonlinear vertices in E@38) are given by

Qi(1)=(Ei(1))=QP(1)+Qr(1)+ Q] (1),

ZH(1) =y {go( 1)+ g (DI my (D)2 with
+ 92 (1)V my(1)V ;my(1)V ymy(1) QP(1)=(EP(1))=go(1)(mi(1)),
XVpm (1)+---}. QFH(1)=(EF(1)=gy(1)(m(1)[Vm;(1)]?),

Clearly in the long-time limit we require thg’s be of T T .
O(L™1) and, as we shall see, that we can self-consistently Qi (1)=(E;(1))=(-2)V,m(1)V,mi(1)).
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The fundamental equation satisfied by the average of th
MSR response field is given by

—i[A(1)(M(1)),+Q(1)]=h(1),

where we define

(39

i +V?2
oty

and the nonlinear contributions are given by
Qi(1)=(E,(1))=QP(1)+ Q1)+ Q] (1),
with
QP(1)=(EP (1)) =go(1)(M;(1)p;j(1)),
QH(1)=(EH(D))
=(M;(1)g1(1)pij(D[V,,m(1)]%)
—(V[M;(1)g1(1)m;(1)2V ,m;(1)])
and
Ql(H=(E(1))
=(2m(1)V [M;(1)V,m;(1)]
+2pi;(1)V,[M;(1)V,m(1)]),

and

1
)=—(3

o mm;).

pij(1 ij
All correlation functions of interest can be generated a
functional derivatives o{m(1)), or (M (1), with respect to

h(1) andH(1). In thelimit in which the source fields van-

ish, each term in the two fundamental equations vanish.

Therefore it is derivatives with respect to the external

PERTURBATION EXPANSION IN . ..
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e The equations governing theth order cumulants are
given by

~i[A(1)Gym. .. m(12 - -n)+Qp(12---n)]=0 (42)
and
i[A(1)GM(12 - -n)—Qy(12---n)]
=—J d1 Mo(11)Gym... m(12---n), (43
where theQ'’s are defined by

-1

Q12 )=y sh(n—1)- - sh(2) 2

(44)

and

-1

Q12N = S Shin=1) - oh(2) 2D (49

With this notation the equations determining the two-point
functions can be written as

—i[A(1)Gym(12)+Q,(12)]=8(12), (46)

i[A(1)G(12)—Qy(1 )]=—f d1 T15(11)Gym(12).
(47)

The point now is to show that there is a consistent perturba-
tion expansion for this theory. To get started we need to

express@i(l) andQ;(1) in terms of a fundamental set of
vertices which can be written in terms of the singlet prob-
ability distribution

Ph(X,1) =(8(x—m(1)))y.

sources of these equations which are of interest. Let us iAfter a great deal of rearrangement one can show that the

troduce the notation thaﬁAl,A2 _____ An(l,z, ...n) is thenth

order cumulant for the set of field#\; ,A,, . ..., A,}, where
field A; has argumen(l), field A, has argumen(2), etc.
This notation is needed when have cumlants witland M
mixed. As an example,

83(m(4))y,
SH(1)sh(2)8h(3)"

Gummnl 1234 = (40)

As a short hand for cumulants involving onity fields we
write

5n71
N sh(n)éh(n—1)---6h(2) (m(1))p.
(41)

GM(12--.n)

The hierarchy of equations connecting these cumulants is

given by taking functional derivatives of the fundamental
equations given by Eq$38) and(39).

nonlinear vertices, th®’s can be put in the form

QP(1)=go(1)U;(1), (48)

Q%(1>=2 fd?d§gl(1>w(12_3>o“<2_3>ui<1>,
Q?(1)=Zk fdgd?w(12_3)ojk(z_3)ujk,i(1),
]
QP(1)=-3 [ d2d3 o104 (11U, (D),

é%'1(1>=—§ f d2d3 g;(1)w(123)0,4(23)

X O, (DU (1),
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”.“2<1>=—§ J d2d3 2g(1)w(123)0;(2)
X0, (3)U;(3),

Q1) =

-3 f d2d3 w(123)Oy (1)
js/ :

X 04,(23) Qs j(1),

Ql41)= f d2d3 2w(123)oM (3)
xo/@ui/,j(l), (49
where we have introduced the operators
) = (1)
and
’ (2) (1) g
Oj(23) = 5hj(2)5hk(3) (23 +G{M(2) 5 h(3)

+GM(3)

(1) (1)
sz TG,

We have also introduced the three-point vertices

d

w(123 = >, V512 vV s(13)
a=1

and

w(123 =V V[ 8(13)V ,15(12)].
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Uijk...,/mn...,stu ..(1;234 B )

0 o o
hs(2) 6hy(3) ohy(4)

Uik . smn.. (1),
The point we want to establish is that if hasp vector
labels, then, at lowest order, we can takdo be of O(p/2
—1), plus higher-order terms.

The perturbation theory expansion for the
Uijk ... /mn...(1) follows from the expansion properties of
the singlet-distribution function. The perturbation theory ex-

pansion forPh(i,l) is straightforward. Using the integral
representation for thé function, we have

. d"k
Ph(x,1)=J o

where H(1)=ik-m(1). Theaverage of the exponential is
precisely of the form which can be rewritten in terms of
cumulants:

—ilZ->Z<eH(1)>h,

N o1
@(k,1)5<eH<l>>h=ex;{ZlS—,G$§>(1) :

whereG{?(1) is thesth-order cumulant for the field(1).
SinceH(1) is proportional tcrﬁ(l) these are, up to factors
of ik to thesth power, just the cumulants for the field:

D1y=i (1)
Gl <1>—|a21 Ka, G4(1),

G =(1)? 2 Kaka,G, (1D),

a ap

koGP

ap "z T ajazag

GRAD=(1)® X kyk (111),

ajazag
and so on. We can therefore write

Each term in these expressions for @& can be expressed

in terms of the set of nonlinear vertices which are integral

moments ofP,[X]:

Uik . (1)—f d"% XXX - - VEVIRVE- - Pyx,1].
(50
We have also defined
Qs/ij(1)=Usg/jj(1) = Ujs (1) = U, 5(1).

V. PERTURBATION THEORY EXPANSION

All of the cumulants involving the fieldn can, in prin-
ciple, be obtained from Eq$38) and (39) by taking func-

tional derivatives. This then requires that we work out the

functional derivatives ofQ, and Q,, which are defined by
Egs. (44) and (45). These objects are functional derivatives

-k, c®

(K1) = ex[{El (s? Kagkey - Ke G as(ll...l)]

We will assume, as we will show self-consistently, that
pth-order cumulants are of ordpf2— 1 in the vertex expan-
sion. Expanding and keeping terms up to the four-point cu-
mulant, we obtain

- 1
_ 3 a o [e3
Ph(X,1)=|1— alaEZQSyegl)azas(lll)vxlvxzvxu...
x P{(x,1), (52)
where
o - dK o s
P ><x,1>=f<z )n<bﬁ>(k.1>e"k'* (52
v

of Q, and Q, which are proportional to a few of the and

Uijk ..

/mn. ..

Q, andQ,

plying vertices given by

(1) and functional derivatives of these quan-
tities. From this discussion it should be clear that all of the

can be written as a product of cumulants multi-

) LO)( E, = e Ealkale(ﬂll)(l)87 llzzalazk"lkazG(HZ)“z(ll)

We can define the lowest order set of vertices
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()

U m/mnm(l):f d" XXX . .. VL VEVE

g

n
d"™X XXX

n

n
d™ XXX -

N

(2m)"

It should be clear, after inserting E¢p1) back into Eq.(50),
that

(D

Uijk...,/mn..

_p11(0
_Ui(jk)...,/mn...

+ X

(1)

(9)
ijk..../mn.. . ajasazay

U (D)

(4)

1
X 7 O g, (1110 + (54)

It is clear that if the term on the first line of E€G4) is of
O(p), then the term on the second line is@{p+3).

For these ideas to be self-consistent then the functi
derivatives ofu(© . . .
works is because factors of the one-point cumul@nil)
enters in the exponential appearingdﬁwo)(lz,l) multiplied

PERTURBATION EXPANSION IN . ..

B A AL

must be higher order. The reason this

B [ P 1095

... PO[x,1]

N

(—ik ) (—ikp)(—ikp) . J

d"k
(2m)"

r'Ik . -
DP(k,1)e kX,

2 (53

Notice then that all derivatives of) and higher order
terms can be expressed as products of the vertié®swith
legs connected by cumulants. Any contribution to the non-
linear verticesQ,, andQ,, can therefore be ordered summing
up the contributions from each vertex and cumulant where a
vertex with 2+ 2 legs makes a contribution @(s) and a
cumulantGP*2) makes a contribution o®(p).

For our purposes here, we only need two sets of the bare
verticesU(©:

by a factor ofk. Thus functional derivatives either bring

down factors ok from the exponential or increase the order
of cumulants which do not involve the one-point cumulant.

To see how this works consider the set of derivatives

2
(0) (1).

U ...613&4

9 Sh@ah, @)
The functional derivatives then act ab{®)(k,1). It is then
easy enough to work out, using Eq53) and (52), that

52

N O
5ha3(3)5ha4(4)¢’h (kDlh-o

= (2) (2)
> Kaka[GP, (139G, (14

@142

(4)

-1ic (113410 (k,1).

We then have

U

.. .a3a4

g — (0) ) (2)
(1;39=2 U@, (1IGY, (1362, (14)

a1a2

(4)

_1
2 Ga1a2a3a4( 1134)]

and if UY (1) is of O(p) thenU'® , , is of O(p+1),
O yaga, 18 0F O(1), @andU ., (1;34) is of O(p+1)

plus higher-order terms.

Vslag;ag, ... ,aps12;1)
=j d"x X,
1
onal Nk L
xf (IVky Ky Ky ®O(K,1)e kX
(277)“ 2 3 2s5+2
and
Velaq,az; ... azs42:1)

= f d"™X Xo X,

f d"k
X

(2m"
It can be seen th&s(aq;as, ... @ 5;1) is the natural
generalization of the verteg (1) given by Eq(92) in paper
I. As in paper |, it is straightforward to work out these ver-
tices explicitly by doing the integrations. The quantities we
will need below are given by

P

kas ag"’ -ka25+2

r n+2
2 2
Vo(alia2§1):5a1,a2 %—n’
nl“(z)
Vi(ag,a;,a3,a4,1)
n+1
| 2 2
€Y n(n+2)F(E)’
2
- 1
VO(aliaZ;l):gal,azﬁl
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and

Vi(ayg,az;as,a4;1)

1|1 1

S0 1 Oy ay0ay, 0, 5 gy a5,y
We have also introduced
S(1)=G(1D) =(mi(1)),
with no summation ovet, and the symmetric tensor

I 1) + 9, 1) + 9, 1)

al,az,a3,a4: aq,ay%ag,ay aq,az%ay,ay ag,a%ay,ag"

A. Two-point nonlinear vertices to second order

MAZENKO PRE 61

ngo3)a4'al,a2(1): _vl(a3la4;a1’a2;1)
+Vi(ay,a3;a4,02;1)

Vi (ay,aq;03,a5;1),
S(1)=2 (Vim,(1)V;m,(1)),

where there is no summation ovetr These results give a
closed solution for the two-point correlation functions at ze-
roth order. This analysis of this lowest-order solution is
given in the next section. In the following section we analyze
the four-point correlation functions needed in order to extract
the two-point correlation functions at second order.

VI. ZEROTH-ORDER THEORY FOR TWO-POINT

Armed with these results we can return to the evaluation CORRELATION FUNCTIONS

of the Q, andQ,, derived fromQ, andQ, which are given

The equations of motion at zeroth order for the two-point

by Egs.(48) and(49). We summarize first the results for the ¢orrelation functions are given by the coupled set of Egs.

two-point quantities which enter Eggl6) and(47). We find

after a significant amount of work that

Q,(12)=0(11)G(12)+S(1234)G(2342), (55

Q2(12) = Q(11)Gym(12) +51(1234) Gimmef 2342),
(56)

(46) and(47) with the lowest-order contributions f@, and
Q, given the leading-order terms in Eq&5) and (56). In-

serting
Q(12)=0(11)G(12),

QP12 =0 (11)Gyn(12)

where integration and summation over repeated barred indinto Egs.(46) and(47) and explicitly writing the vector la-
ces is implied. The various auxiliary quantities are definetbels, we obtain

by

9(12>=[go<1>+91(1>S<2’<1)]vo<a1;a2;1>6<12>,(57)

§(1234 = %Y/o( 1234 +V, (1234 +V,(1234, (598

$,(1234 = ;V0(1234> + V(1234 +V,(1234
+V3(1432+V[ (1432, (59
V(1234 = —go(L)Vi(aq;ap, as,0,;1) 5(12) 8(13) 5(14),

V(1234 =g1(1)Vo(as; @z;1) 84,0, W(134 5(12),

a3a4

Vi(1234=Vy(a3,aq;a1,02;1)8,,,,W(134 5(12),

V(1234 =-W(1345(12Q%) , . . (1),
V3(1234= -2V (aq,a3;a,,00;1)W(134 5(12),
V(1234 = —29;(4)Vy(@s;a2;4) 8, o, W(134 5(24),

and

—i[A)+wo(DIG r (12=5(12)8,,

y Q!

i[A(1)—wo(1)IGQ (12

@y ,ap
—- [ dtnane , 1.
where we have defined

wo(1)=[go(1)+91(1)SP(1) Vo( @1, a1:1).
We see at once that the solution to this set of equations is
diagonal in the vector indices,
GY , (12=4,,

al,th

G912

1 d
and

G(h?ilmaz( 12)= 84, 4,Giim(12),

whereG(©(12) andG(®) (12) are the same quantities found
in the scalar case in paper I. We summarize briefly the results
since they are needed here. At long times we can write

)= 60
(1)0( )_ tc+t; ( )
where w is a constant we will determine angd is a short-
time cutoff which depends on details of the early-time evo-
lution. One has then that the response function is given by
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G{h(r tato) =G (1, taty)
0 o[tz —ty)]

[4m(t,—ty)]9?

ty+t,
ty+t,

:_ie(tz_tl)(

wherer =r,—r,, the correlation function is given by

w —r8T

t+te
te

tr+te
te

“ e

(87T) dr2’
(61)

GO(r,t4t,)=g(0)

whereg(0) is the on-site value of the initial correlation func-

tion, and it is convenient to define

t,+1t,

>

If we are to have a self-consistent scaling equation then

the autocorrelation functionr €0), at large equal timet;
=t,=t, must satisfy

© t 2w 1
SM(t)=g(0) E WEAOL

Clearly this result fixes the exponent

AR
and the amplitude
1 g(0)

0 (62

_(tc)Zw (87T)d/2'
Equation(61) can be rewritten in the convenient form

GO(r,t1t) = VSO(t) SOt D g)(t1,t)e” vz HaT),

where

\/@)dlz

CD(O)(tl!tz):( T

The nonequilibrium exponent is defined in the long-time

limit by
G0k ) _ « t):(@”
L) T
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A. Four-point correlation functions at first order

If we are to evaluat&(® and Gy, to second order, we
see that we must evaluate the four-point quantiG&8 and
Gummm to first order in the vertex expansion. This requires

the evaluation ofQ, and Q,. Using the same techniques
developed in evaluatin®, andQ, we find

Q4(1234=0(11)Gymmnf 1234

+5,(1234)Py,(234,234), (63)

where 0(12) and$,(1234) are defined by Eq$57) and
(59), respectively, while

Pu(2'3'4" 234 =Gyn(4'2)[G(3'3)G(2'4)
+G(3'4)G(2'3)]+Gym(4'3)
X[G(3'2)G(2'4)+G(3'4)G(2'2)]
+Gum(4'2)[G(3'2)G(2'3)
+G(3'3)G(2'2)]. (64)

We also have

Q.4(1234=0(11)G*) (1234 +3(1234)P(234,234),
(65)

where$(1234) is given by Eq(58) and
P(2'3'4' 234 =G(4'2)[G(3'3)G(2'4)
+G(3'4)G(2'3)]+G(4'3)
X[G(3'2)G(2'4)+G(3'4)G(2'2)]
+G(4'2)[G(3'2)G(2'3)
+G(3'3)G(2'2)].

Inserting Eq{(63) for Q, into Eq.(42) we see that we can
do a partial integration and write

Gymmnl 1239 =G®) (11)i5,(1234)P),(234,234),
(66)

whereS; is defined by Eq(66). Using the symmetry prop-
erties of Py(234,234) we can show that Eq66) can be
written as

Gummnf 1234 =G (11)V(2;134) Py (234,234),
(67)

and we obtain the OJK result=d/2. Looking at equal times Wwhere

we have the auxiliary field scaling function

GO(rtt)
5(0)(t)

—x2/2

fo(X)=

where the scaled length is defined Ry r/L(t), and the
growth law is given byL2(t)=4t. The exponenv, defined
by Eq.(71), is zero in the OJK approximation.

V(2,134 = V(1234 + iV (2,134 +iV, (2,134

and the symmetrized vertices are given by
V0 o(2,134=V(2134+V (2,413 + V(2,314

and
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V14(2,134=V,(2134+ V(2,413 +V,(2,314.
In turn Eqgs.(67) and(65) can be put back into Eq43) with

n=4 to obtainG®. After manipulations it can be written in

the properly symmetric form

4 1 0 R 1991 o
G*)(1234 = §Gﬁngﬂ(ll)vs(l;234)P(234,234)

1 _ -
+ §G§n°,2,|(21)vs(1;234)P(234,134)

1 o
+ §G§T?KA(31)VS(1;234) P(234,124

1 _
+ §G§]?,{,|(41)VS(1;234)P(234,123).

We see after these manipulations that all of the first-order
corrections have been combined into a single vertex.

VIl. TWO-POINT CORRELATION FUNCTION
AT SECOND ORDER

A. General equations

Given G and Gy mmm at first order, we can return to
Egs. (63) and (56) to obtain Q, and Q, to second order.
These in turn are put back into Eq46) and (47) to obtain
the second-order results for the two-point correlation func-
tions. We focus here on the correlation function. After a
single integration of Eq47) we have

_1 - - _ - -
G(12)=G<°>(12)+G$T?g,,(11)§vs(1;234)e4(2342)+G<°)(11)vs(2;134)GMmmn(2342)

(0) ) (1713 1 =iy w5370 (0) (57D 2 A 52, ) (5TI\DDT AT 53
=G (12)+GmM(ll)§VS(1,234)§VS(1 2'3"4N[GLin(21")P(2'3'47,234) + Gin(21")P(2'3'47,234)

+GM(31')P(2'374",224) + G (41')P(2'3"4" 223)]

+GO(11)V(2;134)G(0)(217)V(2';173747)P,(2/3"4" 234).

This last term simplifies since, because of causality, only the The detailed analysis of these contributions to the corre-

term proportional toGMm(?’Z) in Py(2'3'4',234) sur-
vives, and

V(11237 4)P(2'3'4’ 234)
=6V(1':2'3'4")G(2'2)G(3'3)G(4'4).
We then have the final formal expressions
G(12=G(12+GO(12+ GV (12 + GV)(21),
where thesymmetriccontributions are given by
GO(12)= %G%?RAMT)G&?W?)VS(T;@
XV«(1';2'3'4")G0(272)
xG©(3'3)G((4'4)
and theunsymmetricontributions are given by
G (12 =26Q(11)G*(22')V,(1;234)
XVy(1';2'3'4")GQy(21")

xG©)(3'3)G(0(4'4).

lation function follows closely the analysis developed in de-
tail in paper I. Indeed if the full verteX/ is replaced by

(i/2)VO andn set to 1, these equations reduce to those found
in paper I. One can again carry out explicitly the internal
spatial integrations. Among the new elements in this analysis
is the treatment of the gradient insertions in the vertices and
the internal vector sums. One must also introduce the param-
eter

9=01(1)Vo(ay;a;:1)S(1),

which, as anticipated earlier, requires tigaf1) go asL !
for long times with an amplitude which is determined as part
of the scaling structure.

B. Extraction of indices

As in paper I, all of the various logarithmic singularities
found in second order, and arising from internal time inte-
grations, can be absorbed into expressions for the exponents
o, \, andv. At second order in the vertex expansion the
exponents are determined by the set of equations

d 2d+l
7\=—+w23—HS (68)

and
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v 2mdt1 Hsg © Zd/2-1
=2 Hy+ —|, 69 K =f z , (72)
7 g (©9 o 23—
where the quantitiesl; andHg are given below. The con- dri Z02-1 7
dition that the growth lawL~t'? be maintained order by Kffj):ZJ dz = 5
order in perturbation theory determines the parameter o [(1+2)(3-2)]"" (1+2)
and, as in paper |, can be expressed in terms of the exponent 2(1-2) (1-2)2
v - +(d+2) ,
(3-2) (3-2)?
14
2(0"’ §:1+d/2 (70) K(g)_ dJld_’ Zdlzil 7
d 7 4)0 1 — 192 (1+2)(3—-2
There are two intrinsically different contributionsl,;, and o [(1+2)(3-7)] ( ) )
Hg, to the second-order expressions for the correlation func- (1-2)
tions which come from graphs with different structurks, X 1_(d+2)(:’>Tz) : (73
andHg, which depend only on the parametess g, d, and
n, are defined in terms of a set of auxiliary quantities: If we setn=1 andg=0 then this set of equations reduces to

Hs= QMg+ Q¥My, ,,
Hu=Q{Ka+ QK+ QP K,

where

1
©__ -
Qs =372

1— 28(2)>,
®

d
QY= [(d+5)8¥+2(d~1)s),

and theS(") are basically the result of internalvector sums,

3 2(n—=1) (n+2)

(2)—
S 3n 3 9
-2~ ng?
n(n+2) '

_(n—2)(n—1) B 2(n—1)
"~ n3(n+2) n 9

2

s@ +g2.

that found in I. Then Eq969) and(70) can be solved fow
andv and the results inserted in E@8) to obtain the index
\ as given in paper |.

The parameters and g should be thought of as being
generated by some type of renormalization grotfiG)
analysis. Carrying forward the RG analogy, these parameters
are to be determined as part of finding the scaling fixed point
in the problem. This process is similar to finding a fixed
point Hamiltonian in critical phenomena. The parameter
occurs naturally at lowest order in the perturbation theory
expansion, whileg naturally arises at second order in the
expansionw andg are determined by the requirements that
the scaling lawt. ~t*2? and the index relatiom= 2\ —d hold
at all orders. The maintenance of the growth law leads to the
condition given by Eq(70). The requiremenv=2\—d is
enforced by choosing

Hy=0. (74)

While there are many possible ways of extracting explicit
numbers for the indices from the perturbation expansion just
described, we discuss two here. In #rgansiormethod we
setw=wy=3(1+d/2) in the second-order terms and obtain
the indices directly. In the second method we look for a
self-consistent solution of Eq$70) and (74) for g and w.

For larged andn these two approaches are equivalent. While
the variousd-dependent integralk ), etc. can be worked
out analytically for specific values af, the expressions are
not very illuminating. Numerical values fox, v, andg are
given in Tables I, Il, and Ill. Except for the values af
maked by an *, whose significance is discussed below, the
values ofv are given byr=2\—d and w is given by Eq.
(74). One sees that the self-consistent valuesXaare all
close to the OJK values. The perturbation theory results can
lead to much larger corrections.

It is instructive to work out the largd-limit analytically.

For generaln, one finds a solution of Eq.74) in the limit

The constantg and w parametrize the scaling properties of with

the nonlinear terms in the equation of motion for the auxil-
iary field. Finally, we have the-dependent integrals

1 29271 1 T2(d/2)
Md:f dZ == ,
o [1+z]¢ 2 TI'(d)

3
9= h+2)

1 2(n—1))
27 " |

This expression foig has a minimum value of 1/4 fon
=1, a maximum of 7/16 fon=2, and then a slow decay to
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TABLE |. Values of exponenin. In the second column per TABLE IIl. Values of exponent. An asterisk indicates that no
refers to values from the current theory fully expanded, sel refers teolution to Eq.(74) was found.
a self-consistent solutions from the current theory, TUG refers to

values from Ref[4], OJK refers to the values from Rgf], and Dimension n=1 n=2 n=3
num refers to numerically determined values. An asterisk indicates — — -
that no solution to Eq(74) was found. 1 3.0873%10 1.181836<10 1.7438
2 1.1704x10 2  4.530440x10 2  1.3928*
Dimension n=1 n=2 n=3 3 4.8000010°%  1.645200<10 2  4.3149K10 2
per 0.5819 0.8120 1.1172*
*
sel 0.5154 0-5590 0.6206 the n-vector model. The approach developed here appears to
1 TUG 1.0 0.699 0.622 . . .
0K 05 05 05 be a rather general tool for looking at field theories where the
num ' ' N 648 field is growing and showing scaling behavior. One is able to
: develop a systematic expansion in the number of labels on
per 1.0530 1.2045 1.5326* . . L. .
the nonlinear vertices appearing in the problem. This expan-
sel 1.0059 1.0227 1.0597* . . . .
sion leads directly to expressions for the anomalous dimen-
2 TUG 1.2887 1.171 1.117 . . .
sions in the problem. Less generally one is then confronted
OJK 1.0 1.0 1.0 . . . . .
num 1.246-0.02 with the interpretation of the perturbation theory expansion
' ' in a particular realization of the theory. As organized here,
per 1.5375 1.6284 1.8240 . . .
the self-consistent corrections to the OJK results for the in-
sel 1.5024 1.5082 1.5216 . . . .
dices\ andv are typically quite small and vanish for both
3 TUG 1.6726 1.618 1.587 L.
0K 15 15 15 larged andn. The larged convergence is tied to the enforce-
num 1.838t0 A ' ' ment of the equatiomw= 2\ —d relating the indices.
large ' a2 ' a2 42 The transverse degrees of freedom enter quite differently
9 into the problem compared with the longitudinal degrees of
3 rom Ref.[10]. freedom. The longitudinal contributions to the nonlinear
°From Ref.[15]. terms in the equation of motion for the auxiliary fiefumust

be determined self-consistently in constructing the scaling
properties in the problem. The contributions to the transverse
part of the equation of motion for the auxiliary field are,

zero as a function af. For the scalar case the contributions
to v andA=d/2+ v/2 are given to leading order by

2w d®? because the transverse degrees of freedom are massless,
926 3T/2 fixed by the requirement, for self-consistency, that the am-

which gives exponential decay to zero for lajeFor large plitude for the transverse order-parameter fluctuations be

n the exponents are also given by the OJK result, with corSmall compared to the ordered component. It turns out that
rections of the form\ =d/2+\,(d)/n+ - - -, where the pre- the transverse contributions to the equation of motion for the

cise dependence af; on d is complicated. auxiliary field are sufficiently strong, for fixen>3 and suf-
This procedure for fixing the coefficients and g works ficiently smalld, that we are unable to enforce the condition

straightforwardly for the scalar case and generally dor v=2\—d. This regime requires further study.

>n. However, ford<n one finds, for small enougti, that The point of view developed here is somewhat unantici-

the new spin-wave contributiojgroportional to f—1) in  pated. In the most direct approach, as discussed in some

the S"] lead to a breakdown in this process. Solutions to Eqdetail in paper I, one makes the substitutior o[ m] into

(74) do not exist and one cannot enforce the relation the order-parameter equation of motion to obtain the equa-

=2\—d. In this case we have chosgnsuch thatH, is a - f ion form ; L
= . Th h taken h ff
minimum. The structure of the theory fae>d needs further tpn of motion form e path taken here is quite different

work. This is just the regime where one does not generat&nC€ the equation of motion fom is constructed self-

stable topological defects. consistently. The surprising point is that the quardty(m),
which enters the equation of motion satisfied by the auxiliary
VIll. CONCLUSIONS field, is not determined when we inseti= g+ into the

It has been shown how one can extend the method deVeci)_rder-parameter equation of motion. It is this freedom that

oped previously for a scalar order parameter to the case GHlOWs us to construct the scaling regime form By (m).

TABLE Il. Values of parameteg. An asterisk indicates that no solution to E@4) was found.

Dimension n=1 n=2 n=3
1 7.642363224210°* 1.2448881672 1.3940000000*
2 5.117508757210°* 9.344275691%10 ¢ 1.2310000000*
3 4.267414407%10°1 7.930089111%10 ¢ 1.0569791347

large 0.25 0.4375 0.416666
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